1887

Abstract

A total of 48 pathovars of and eight related species were studied by DNA-DNA hybridization (S1 nuclease method) and ribotyping. The existence of nine discrete genomospecies was indicated. Genomospecies 1 corresponded to and included and and and Pseudomonas amygdali, which are thus synonymous. P. amygdali is the earliest valid name for this genomospecies. Genomospecies 3 included and . We recommend strain CFBP 2212 of . Genomospecies 4 included ‘’ and and corresponds to ‘’. Genomospecies 5 included pv. and corresponds to nov. Genomospecies 6 included and the presently misidentified pathotype strains of and and thus corresponds to . Genomospecies 7 included and . We recommend strain CFBP 1694 of and and pv. and sp. nov. Ribotyping ( and and 7 will be named when phenotypic data are available for identification. Two species are described, . and sp. nov. Other species will be named when phenotypic data are available for identification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-469
1999-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-469.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-469&mimeType=html&fmt=ahah

References

  1. Bradbury J. F. 1986; Pseudomonas Migula 1894. Guide to Plant Pathogenic Bacteria110–184 Egham, UK: International Mycobiological Institute;
    [Google Scholar]
  2. Brenner D. J., McWorter A. C., Leete Knutson J. K., Steiger-walt A. G. 1982; Escherichia vulneris: a species of Enter o-bacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  3. Brosch R., Lefèvre M., Grimont F., Grimont P. A. D. 1996; Taxonomic diversity of pseudomonads revealed by computer interpretation of ribotyping data. Syst Appl Microbiol 19:541–555
    [Google Scholar]
  4. Crosa J. M. D., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115:904–911
    [Google Scholar]
  5. Denny J. P., Gilmour M. N., Selander R. K. 1988; Genetic diversity and relationships of two pathovars of Pseudomonas syringae. J Gen Microbiol 134:1949–1960
    [Google Scholar]
  6. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int J Syst Bacteriol 35:169–184
    [Google Scholar]
  7. Doudoroff M., Palleroni N. J. 1974; Genus I. Pseudomonas Migula 1894. Bergey’s Manual of Determinative Bacteriology, 8.217–243 Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Dye D. W., Bradbury J. F., Goto M., Hayward A. C., Lelliott R. A., Schroth M. N. 1980; International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol 59:153–158
    [Google Scholar]
  9. Gardan L., Cottin S., Bollet C., Hunault G. 1991; Phenotypic heterogeneity of Pseudomonas syringae. Res Microbiol 142:995–1003
    [Google Scholar]
  10. Gardan L., Bollet C., Abu Ghorrah M., Grimont F., Grimont P. A. D. 1992; DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. Int J Syst Bacteriol 42:606–612
    [Google Scholar]
  11. Grimont F., Grimont P. A. D. 1986; Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 137B:165–175
    [Google Scholar]
  12. Grimont F., Grimont P. A. D. 1995; Determination of rRNA restriction patterns. Diagnostic Bacteriology Protocols181–200 Howard J., Whitcombe D. M. Totowa: Humana Press;
    [Google Scholar]
  13. Hildebrand D. C., Schroth M. N. 1972 Identification of the fluorescent pseudomonadsProceedings of the Third International Conference on Plant Pathogenic Bacteria281–287 Maas Geesteranus H. P. Wageningen: Pudoc;
    [Google Scholar]
  14. Hildebrand D. C., Schroth M. N., Sands D. C. 1988; Pseudomonads. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2.60–80 Schaad N. W. St Paul, MN: American Phytopathological Society Press;
    [Google Scholar]
  15. Janse J. D., Rossi P., Angelucci L., Scortichini M., Derks J. H. J., Akermans A. D. L., De Vrijer R., Psallidas P. G. 1996; Reclassification of Pseudomonas syringae pv. avellanae as Pseudomonas avellanae (spec, nov.) the bacterium causing canker of hazelnut (Corylus avellanae L.). Syst Appl Microbiol 19:589–595
    [Google Scholar]
  16. Kersters K., Wolfgang L., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477
    [Google Scholar]
  17. Lelliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29:470–489
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal de-naturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  19. Misaghi I., Grogan R. G. 1969; Nutritional and biochemical comparisons of plant pathogenic and saprophytic fluorescent pseudomonads. Phytopathology 59:1436–1451
    [Google Scholar]
  20. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic implications. J Appl Bacteriol 41:335–340
    [Google Scholar]
  21. Palleroni N. J. 1984; Genus I Pseudomonas Migula 1894. Bergey’s Manual of Systematic Bacteriology141–199 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J Bacteriol 110:1–11
    [Google Scholar]
  23. Pecknold P. C., Grogan R. G. 1973; Deoxyribonucleic acid homology groups among phytopathogenic Pseudomonas species. Int J Syst Bacteriol 23:111–121
    [Google Scholar]
  24. Sands D. C., Schroth M. N., Hildebrand D. C. 1970; Taxonomy of phytopathogenic pseudomonads. J Bacteriol 101:9–23
    [Google Scholar]
  25. Skerman V. B. D., McGowan V., Sneath P. H. A. 1989 Approved Lists of Bacterial Names Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  27. Willems A., De Vos P., Gillis M., Kersters K. 1992; Toward improved classification of Pseudomonas. Identification Methods in Applied and Environmental Microbiology 2921–43 Board R. G., Jones D., Skinner F. A. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  28. Young J. M. 1992; Pseudomonas syringae pv.japonica (Mukoo 1955) Dye et al 1980 is a junior synonym of P syringae pv. syringae van Hall 1902. Lett Appl Microbiol 15:129–130
    [Google Scholar]
  29. Young J. M., Triggs C. M. 1994; Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. J Appl Bacteriol 77:195–207
    [Google Scholar]
  30. Young J. M., Takikawa Y., Gardan L., Stead D. E. 1992; Changing concepts in the taxonomy of plant pathogenic bacteria. Annu Rev Phytopathol 30:67–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-469
Loading
/content/journal/ijsem/10.1099/00207713-49-2-469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error