Desulfuromonas thiophila sp. nov., a New Obligately Sulfur-Reducing Bacterium from Anoxic Freshwater Sediment

KAI FINSTER,1,* JOHN D. COATES,2 WERNER LIESACK,3 AND NORBERT PFENNIG4

Institute of Biological Sciences, Department of Microbial Ecology, University of Århus, Ny Munkegade, DK-8000 Århus C, Denmark; 2 Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092; and Max-Planck-Institut für terristische Mikrobiologie, D-35043 Marburg,3 and Primelweg 12, D-88662 Überlingen,4 Germany

A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27T belongs to the Desulfuromonas cluster in the recently proposed family “Geobacteraceae” in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27T in this paper.

Bacteria that are able to grow by linking the oxidation of acetate to the reduction of elemental sulfur have been known since Pfennig and Biebl described the isolation of Desulfuromonas acetoxidans in 1976 (26). While a number of strains of the genus Desulfuromonas have been isolated and deposited in culture collections (33), Desulfuromonas acetoxidans (with type strain DSM 864) is the only species that has been validly published previously (26). Recently, two other species, the freshwater organism “Desulfuromonas acetexigens” (with type strain 2873 [= DSM 1397]) (10) and the marine organism “Desulfuromonas palmitatis” (with type strain SDBY1 [= ATCC 51701]) (4), have been characterized. Data obtained for a second freshwater strain (isolate NZ27), which was tentatively named Desulfuromonas thiophila, have been published in review articles (31, 33). However, a valid description of this strain has not been published previously.

In this paper we present a detailed characterization of Desulfuromonas thiophila NZ27T, including a phenotypic description, the phylogenetic affiliation of this organism with known species of the recently described family “Geobacteraceae” (19), and the results of DNA-DNA hybridization studies performed with closely related species of the genus Desulfuromonas. Based on the genotypic and phenotypic differences between strain NZ27 and the other members of the genus Desulfuromonas, we propose that strain NZ27 is the type strain of a new species, Desulfuromonas thiophila.

MATERIALS AND METHODS

Source of the organism. Sulfur-reducing strain NZ27T was isolated in 1979 by Bache and Pfennig (1) from anoxic mud from a freshwater sulfur spring at Ngawha Springs in Moerewa, New Zealand (North Island).

Media and cultivation conditions. The basal medium used for cultivation of freshwater strain NZ27T contained (per liter) 0.5 g of NaCl, 0.2 g of MgCl2·6H2O, 0.1 g of CaCl2·2H2O, 0.1 g of NH4Cl, 0.2 g of KH2PO4, and 0.25 g of KCl. After the medium was autoclaved and cooled under oxygen-free N2, the following additions were made from sterile stock solutions: 30 ml of 1 M NaHCO3 per liter, 3 ml of 0.5 M Na2S per liter, 2 ml of trace element solution SL 10a (8) per liter, 1 ml of a vitamin B2 solution per liter, 1 ml of a thiamine solution per liter, and 1 ml of a vitamin mixture per liter (32). After the NaHCO3 was added, the medium was handled under a gas phase containing dinitrogen and CO2 (90:10).

Finally, the medium was dispensed into 50-ml screw-cap bottles, leaving a small air bubble in each bottle.

Substrates were added to the basal medium from sterile stock solutions. Sulfur suspensions of highly purified elemental sulfur (sulfur flower) and polysulfide solution were prepared as described by Widdel and Pfennig (33). Elemental sulfur was aseptically added in pea size amounts to 50 ml of medium. Cultures were incubated in the dark at 280C or 300C.

Enrichment and isolation. For enrichment cultures, the basal medium in 50-ml screw-cap bottles was supplemented with 5 mM acetate as an electron donor and carbon source and elemental sulfur as an electron acceptor. The bottles were inoculated with 2 ml of anoxic mud, incubated at 280C in the dark, and thoroughly mixed each day. A slight turbidity and a marked increase in sulfide concentration were observed in consecutive passages, and these characteristics indicated that the enrichment cultures were positive. A pure culture was obtained by repeated use of deep agar dilution series (25). Agar deeps (1% agar) contained basal medium supplemented with elemental sulfur and 2 ml of polysulfide (from a 4 M stock solution) per liter, which resulted in preparations containing highly dispersed elemental sulfur and polysulfide.

Substrate tests. Potential electron donors and acceptors were tested in 20-ml screw-cap tubes, each of which contained a glass bead to disrupt clumps of elemental sulfur. Electron donors were tested with elemental sulfur as the electron acceptor. In the electron acceptor tests, pyruvate (5 mM) served as the electron donor. Unless otherwise indicated, the various electron acceptors were added at a concentration of 10 mM. Growth was monitored by measuring turbidity for 4 weeks.

Potential electron donors and acceptors were tested in 20-ml screw-cap tubes, each of which contained a glass bead to disrupt clumps of elemental sulfur. Electron donors were tested with elemental sulfur as the electron acceptor. In the electron acceptor tests, pyruvate (5 mM) served as the electron donor. Unless otherwise indicated, the various electron acceptors were added at a concentration of 10 mM. Growth was monitored by measuring turbidity for 4 weeks.

Phenotypic characteristics. Gram staining of strain NZ27T was performed by the method of Hucker, and flagellation was determined by the staining method of Leifson as described in the Manual of Methods for General Bacteriology (12).

Phenotypic characteristics. Gram staining of strain NZ27T was performed by the method of Hucker, and flagellation was determined by the staining method of Leifson as described in the Manual of Methods for General Bacteriology (12). Motility was examined by phase-contrast microscopy.

Substrate tests. Potential electron donors and acceptors were tested in 20-ml screw-cap tubes, each of which contained a glass bead to disrupt clumps of elemental sulfur. Electron donors were tested with elemental sulfur as the electron acceptor. In the electron acceptor tests, pyruvate (5 mM) served as the electron donor. Unless otherwise indicated, the various electron acceptors were added at a concentration of 10 mM. Growth was monitored by measuring turbidity for 4 weeks.

Growth parameters. The pH tolerance, salt tolerance, and temperature tolerance of strain NZ27T were determined by performing growth tests in which the changes in the optical density of the culture medium were monitored spectrophotometrically. Optimum growth was identified by comparing the optical densities of cultures after 3 days of incubation, and the growth range was determined after 28 days. In all of the tests, strain NZ27T was grown in basal medium supplemented with elemental sulfur and pyruvate. We were careful not to resuspend the sulfur particles prior to the measurements.

To determine the pH range of strain NZ27T, different amounts of sterile solutions of HCl (1 M) and Na2CO3 (1 M) were pipetted into inoculated 50-ml screw-cap bottles, and the cultures were thoroughly mixed and transferred into 20-ml screw-cap test tubes. Finally, the pH of the liquid that remained in each 50-ml bottle was determined.

The salt tolerance of strain NZ27T was determined by supplementing NaCl and MgCl2-free basal medium containing elemental sulfur, pyruvate, and inorganic (5% vol/vol) with different amounts of NaCl and MgCl2 from sterile stock solutions so that the concentrations desired were obtained. The cultures were grown for 4 weeks, and salt and pH tolerance determinations were incubated at 300C in the dark. The temperature range was determined by incubating inoculated test tubes in an
insulated temperature gradient block. The lowest temperature tested was 0°C, and the highest temperature tested was 50°C.

Analytical procedures. Sulfide was quantified by the methylene blue method described by Cline (3). The presence of cytochrome c was determined with whole cells harvested at the late exponential growth phase. Difference spectra were obtained with air-oxidized and dithionite-reduced cell suspensions. The guanine-plus-cytosine ratio was determined by the thermal denaturation method (23) and high-performance liquid chromatography (HPLC) separation followed by UV detection (29). Calibration and G+C content determinations by the latter method were performed as described by Mesbah et al. (24) at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany).

Iron metabolism. Four 100-ml cultures of strain NZ227T were grown with pyruvate as the electron donor and polysulfide as the electron acceptor. After 5 days, the cells were harvested by centrifugation at 5,000 x g and washed with anoxic bicarbonate buffer (2.5 mM; pH 7) prepared under N2-CO2 (80:20) as described previously (21). The cells were resuspended in bicarbonate buffer. The experimental setup was then similar to that described in the previous section (41x218).

The 16s rDNA sequences of representative members of the recently proposed "Geobacteraceae" (19) were used to construct the phylogenetic tree. The accession numbers for the reference nucleotide sequences used to estimate these relationships were calculated from the average G+C content of the samples by the formula of Gillis et al. (13). The DNA reassociation rate was calculated by performing a regression analysis between 10 and 30 min after start of the reaction by using the computer program TRANSFUR.BAS (15). The homology values were calculated by using the formula of De Ley et al. (5). Each measurement was made three times.

Chemicals. All of the chemicals were reagent grade and were obtained from commercial suppliers.

Nucleotide sequence accession number. The 16s rDNA sequence of strain NZ227T has been deposited in the EMBL, GenBank, and DDBJ nucleotide sequence databases under accession no. Y11560.

RESULTS

Enrichment and isolation. Enrichment cultures for sulfur-reducing bacteria were prepared with medium containing acetate (5 mM) and sulfur flour. Anoxic mud from Ngawha Sulfur Springs near Moerewa, New Zealand, was used as the inoculum. The incubation temperature was 28°C. Positive enrichment cultures were obtained after 2 weeks. These enrichment cultures were transferred every week. After four consecutive transfers, a subsample was used to inoculate deep agar dilution series. A few well-separated colonies were isolated from the third dilution series and transferred to liquid culture media supplemented with acetate (5 mM) and polysulfide. One of the cultures, strain NZ227T, was maintained as a stock culture and was used for further studies.

Phenotypic characteristics. (i) **Morphology.** Cells of strain NZ227T were ovoid rods that were 0.7 to 0.8 μm wide and 1.5 to 2 μm long (Fig. 1) and motile. Flagellar staining revealed the presence of one polar flagellum. The cells stained gram negative. In agar medium smooth pink to red colonies were formed.

(ii) **Carbon and energy sources.** Strain NZ227T was able to grow with acetate, pyruvate, succinate, and fumarate in the presence of elemental sulfur. The following chemicals were tested but were not used by strain NZ227T for growth when elemental sulfur was added as the electron acceptor (the concentration of the electron donor was 5 mM unless indicated otherwise): H2, formate (10 mM), propionate, butyrate, caproate, octanoate, palmitate (2 mM), myristate (2 mM), lactate, cyclohexanecarboxylate, citrate, malate, tartrate, malonate, glucose, fructose, mannitol, glycerol, glycinate, methanol, ethanol, n-propanol, butanol, benzotate (1 mM), betaine, alamine, aspartate, glutamate, Casamino Acids (0.1%), yeast extract (0.1%), and peptone (0.1%). A fermentative type of metabolism with fumarate, malate, or sugars was not observed.

Elemental sulfur was the only electron acceptor with which sustained growth occurred. Fe(III)-NTA (10 mM) was reduced; however, this transformation was not coupled with growth (Fig. 2). Sulfate, sulfite, thiosulfate, nitrate, fumarate,
malate, dimethyl sulfoxide, and trimethylamine-N-oxide dihyd-
rate were not utilized as electron acceptors.

(iii) Growth factor requirements and salt tolerance. The com-
plex vitamin solution which was originally used during

enrichment and isolation of strain NZ27T could be replaced by

a mesophilic, obligately anaerobic, sulfur-reduc-

ing bacterium (strain NZ27T) obtained from the anoxic sediment of a fresh-

ter water sulfur spring. The results of a previous study of the

phylogenetic affiliation of this isolate with other sulfur-reduc-

ing bacteria indicated that strain NZ27T is most closely related to

Desulfuromonas acetoxidans and “Desulfuromonas acetexigens,” with S_{XB} values of 0.64 and 0.59, respectively (11). The results of the comparative analysis of the almost complete 16S

rDNA sequences confirmed the previous finding that strain

NZ27T and Desulfuromonas acetoxidans form a distinct line of
descent. DNA-DNA hybridization studies of strain NZ27T and the previously described species of the genus Desulfuromonas, including Desulfuromonas acetoxidans, gave reassociation val-

ues that were not greater than 31% (Table 1). These values were far below the DNA-DNA reassociation value of about 70% which is used to separate related organisms into different

values indicated that the strains tested belong to different spe-

cies (30).

(ii) DNA base composition. The G+C content of the DNA

of strain NZ27T was 61 mol%, as determined by the thermal

denaturation method. The same ratio was obtained by HPLC. The values previously reported for “Desulfuromonas acetexi-

gens” (10) were also confirmed by the HPLC technique, while the

value for Desulfuromonas acetoxidans was slightly different

(Table 1).

Phylogenetic position. The comparative analysis of the al-

most complete 16S rRNA sequence confirmed that strain

NZ27T belongs to the Desulfuromonas cluster of the recently

proposed family “Geobacteraceae” (19). The most closely

related species was Desulfuromonas acetoxidans (level of similar-

ity, 96.6%) (Fig. 3), as reported previously on the basis of the

results of comparative 16S rRNA oligonucleotide cataloging

studies (11). The levels of similarity between the 16S rDNA sequence of strain NZ27T and the 16S rDNA sequences of

“Desulfuromonas acetoxidans” and “Desulfuromonas palmitatis”

were 95.0 and 94.4%, respectively. The levels of similarity with

P. venetianus, P. carbinolicus, and P. acetilycicus were 95.4,

94.8, and 94.4%, respectively, while the levels of similarity with members of the genus Geobacter were 93.1% or less. A boot-

strap analysis based on 1,000 resamplings to test the statistical

significance of the interior branches confirmed that the lineage

formed by strain NZ27T and Desulfuromonas acetoxidans was

distinct, with a bootstrap value of 100 (expressed as a per-

centage of outcome). The general topology of the tree constructed in this study (Fig. 3) is almost identical to the topology of the tree published by Lonergan et al. (19); there are only slight

differences in the interior branch points within the Desulfu-

romonas cluster.

DISCUSSION

In this paper we describe the isolation and identification of a mesophilic, obligately anaerobic, sulfur-reducing bacterium

(strain NZ27T) obtained from the anoxic sediment of a fresh-

water sulfur spring. The results of a previous study of the

phylogenetic affiliation of this isolate with other sulfur-reduc-

ing bacteria indicated that strain NZ27T is most closely related to

Desulfuromonas acetoxidans and “Desulfuromonas acetexi-

gen,” with S_{XB} values of 0.64 and 0.59, respectively (11). The results of the comparative analysis of the almost complete 16S

rDNA sequences confirmed the previous finding that strain

NZ27T and Desulfuromonas acetoxidans form a distinct line of
descent. DNA-DNA hybridization studies of strain NZ27T and the previously described species of the genus Desulfuromonas, including Desulfuromonas acetoxidans, gave reassociation val-

ues that were not greater than 31% (Table 1). These values were far below the DNA-DNA reassociation value of about 70% which is used to separate related organisms into different

<table>
<thead>
<tr>
<th>Strain</th>
<th>G+C content (mol%)</th>
<th>% Similarity to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal denaturation method</td>
<td>HPLC</td>
</tr>
<tr>
<td>Desulfuromonas acetoxidans DSM 684T</td>
<td>51 ± 1</td>
<td>53.6 ± 0.4</td>
</tr>
<tr>
<td>"Desulfuromonas acetoxidans" DSM 1397T</td>
<td>62 ± 1</td>
<td>62.3 ± 0.4</td>
</tr>
<tr>
<td>"Desulfuromonas palmitatis" ATCC 51701T</td>
<td>ND</td>
<td>54.7 ± 0.2</td>
</tr>
<tr>
<td>NZ27T (= DSM 8987T)</td>
<td>61 ± 1</td>
<td>61.6 ± 0.2</td>
</tr>
</tbody>
</table>

* ND, not determined.
species (30). Thus, these results suggest that strain NZ27T is a new species of the genus *Desulfuromonas*. The relationship between the overall similarity of the 16S rDNA sequences and the DNA-DNA reassociation values obtained for strain NZ27T and the other members of the genus *Desulfuromonas* confirmed the general finding that strains with levels of 16S rDNA similarity below the threshold value of 97% never exhibit DNA-DNA reassociation values of 70% or more (28).

Strain NZ27T and all previously described members of the genus *Desulfuromonas* have the ability to oxidize acetate with concomitant reduction of elemental sulfur to hydrogen sulfide (33). This characteristic has also been found in members of the recently described genera *Desulfurella* and *Desulfurobacter* (1a, 9, 18). In contrast to all of the other members of the family "Geobacteraceae" tested for the ability to grow by reducing iron (19), strain NZ27T was not able to grow by reducing this element, but used only elemental sulfur as an electron acceptor. However, it is able to reduce Fe(II)-NTA.

Like type strain *Desulfuromonas acetoxidans* DSMZ 684 cells, cells of strain NZ27T are ovoid to rod shaped and motile and form smooth pink to red colonies in agar medium. They also require biotin for growth. Like the other members of the *Desulfuromonas* cluster, strain NZ27T contains type c cytochromes.

Based on the results of the polyphasic approach described above, we propose the new species *Desulfuromonas thiophila* for strain NZ27T.

Description of *Desulfuromonas thiophila* sp. nov. *Desulfuromonas thiophila* (thi.o.phi'la. Gr. n. thios, sulfur; Gr. adj. philos, loving; M.L. fem. adj. thiophila sulfur loving). Cells are ovoid, 0.7 to 0.8 \(\mu\)m wide by 1.5 to 2.0 \(\mu\)m long. Multiplication is by binary fission. Cells are motile by means of polar flagella. Obligately anaerobic. Chemotrophic growth occurs in mineral medium supplemented with 0.01 to 0.03% Na\textsubscript{2}S \(\cdot\) 9H\textsubscript{2}O as a reductant. Growth is inhibited by NaCl concentrations greater than 1.2%. Biotin is required as a growth factor. Acetate, pyruvate, succinate, and fumarate are used as electron donors and carbon sources in the presence of 30 mM hydrogen carbonate. Elemental sulfur is the only electron acceptor utilized for growth. Fe(III)-NTA is reduced with pyruvate; this reduction does not sustain growth. The pH range is 6.5 to 8.2; the optimum pH is 6.9 to 7.9. The optimum growth temperature is 26 to 30°C.

Accumulations of cells in colonies or pellets are pink to reddish; under reducing conditions cell suspensions exhibit absorption spectra characteristic of type c cytochromes (absorption maxima at 419, 523, and 553 nm).

FIG. 3. Phylogenetic tree constructed for strain NZ27T and 13 reference organisms belonging to the family "*Geobacteraceae*" of the delta subgroup of the *Proteobacteria*. The 16S rDNA sequence of *Desulfomorile tiedjei* was used as an outgroup sequence. Scale bar = 2% difference in nucleotide sequences as determined by measuring the horizontal branch lengths connecting two species.

The G+C content of the genomic DNA of strain NZ27T is 61.0 \(\pm\) 1 mol% as determined by the thermal denaturation method and 61.6 \(\pm\) 0.2 mol% as determined by HPLC.

Phylogenetically, strain NZ27T belongs to the *Desulfuromonas* cluster of the recently proposed family "*Geobacteraceae*" in the delta subgroup of the *Proteobacteria* and is most closely related to *Desulfuromonas acetoxidans*.

The habitat is anoxic mud of a freshwater sulfur spring. The type strain was isolated from anoxic mud from a freshwater sulfur spring at Ngawha Springs near Moerewa, New Zealand.

The type strain is strain NZ27, which has been deposited in the Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany, as strain DSMZ 8987.

ACKNOWLEDGMENTS

K.F. is indebted to Niels Peter Revsbech for support. Sonja Fleissner is acknowledged for technical assistance.

This project was financed by a European Union project on Coastal Lagoon Eutrophication and Anaerobic Processes (CLEAN) (contract EVSV-CT92-008) and by the Danish Committee on Biotechnology. J.D.C. was supported by the U.S. Geological Survey National Research Program.

REFERENCES

