Isolation and Identification of Poly(3-Hydroxyvalerate)-Degrading Strains of Pseudomonas lemoignei

JORIS MERGAERT,1*, ANDREAS SCHIRMER,2 LYSIANE HAUBEN,1,3 MARGIT MAU,3 BART HOSTE,1 K. KERSTERS,1 DIETER JENDROSKE,2 AND JEAN SWINGS1

Laboratorium voor Microbiologie, Vakgroep Biochemie, Fysiologie en Microbiologie, Universiteit Gent, B-9000 Ghent, Belgium, and Institut für Mikrobiologie der Georg-August-Universität zu Göttingen, D-37077 Göttingen, and Gesellschaft für Biotechnologische Forschung, Abteilung Mikrobiologie, D-38124 Braunschweig, Germany

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that are synthesized and accumulated intracellularly under limiting growth conditions by a large variety of bacteria. Besides poly(3-hydroxybutyrate) [P(3HB)], polymers incorporating monomers other than 3-hydroxybutyrate have been detected. The monomer composition of the PHAs depends on the bacterial strain, as well as on the carbon sources supplied. The production of PHAs has been reviewed previously (2, 11, 39, 41). Because of their biodegradability, thermoplastic properties, and synthesis from renewable resources, PHAs are of biotechnological interest, and P(3HB) and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (3) have been commercialized as Biopol, an alternative to petrochemically derived, nondegradable plastics. The biodegradability of Biopol has been demonstrated in different natural environments, and a large variety of PHA-degrading microorganisms, including gram-negative and gram-positive bacteria, streptomyces, and molds, have been isolated (5, 14, 24, 25, 27-29, 33, 34). One of the first P(3HB)-degrading microorganisms identified was isolated more than 30 years ago and was named Pseudomonas lemoignei (7). Three P. lemoignei strains were the predominant microorganisms after enrichment in liquid medium containing P(3HB) granules. Only the type strain of this taxon has been preserved, and no PHA-degrading P. lemoignei strains have been isolated since the first isolation. The type strain of the species is particularly interesting, since it produces at least five different extracellular depolymerases (13), one of which is specifically synthesized during growth on poly(3-hydroxyvalerate) [P(3HV)] or valerate (30). Other PHA-degrading bacteria apparently synthesize only one depolymerase (13). The type strain of P. lemoignei is specialized and utilizes homo- and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, their hydrolysis products, and a few organic acids (pyruvate, acetate, butyrate, valerate, succinate), but it is not able to grow on sugars, amino acids, or complex media (7).

In this paper a procedure for selective enrichment and isolation of PHA-degrading P. lemoignei strains, in which P(3HV) granules are used as the carbon source, is described. Ten new P. lemoignei isolates were identified and characterized by using fatty acid analysis, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of whole-cell proteins, the Biolog breathprinting system, 16S ribosomal DNA (rDNA) gene sequence analysis, DNA base composition analysis, DNA-DNA hybridization analysis, plasmid analysis, and conventional phenotypic characterization techniques.

MATERIALS AND METHODS

Isolation of P(3HV)-degrading microorganisms. To enrich for P(3HV)-degrading microorganisms, soil or compost that was collected in or near Göttingen, Germany, was placed in boxes and supplemented with PHAs. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was added as buried Biopol bottles (Wella AG, Darmstadt, Germany), while P(3HV) was repeatedly added as broken cells of Chromobacterium violaceum DSM 30191 which had been cultivated under conditions that promoted polymer accumulation (40). The boxes were incubated at room temperature (18 to 25°C) or 30°C for several weeks. Diluted soil or compost suspensions in 0.9% (wt/vol) NaCl were used as inocula for 10 ml liquid cultures of mineral medium (35) supplemented with 0.15% (wt/vol) P(3HV) as the sole source of carbon and energy (14). After several days of aerobic incubation, clearing of the opaque P(3HV) suspensions was observed in most of the cultures. After a second incubation step performed with fresh medium under the same conditions, dilutions were streaked onto solid mineral medium supplemented with 0.3% (wt/vol) P(3HV) as the sole carbon source. P(3HV)-degrading bacteria were recognized by the appearance of clear halos surrounding the colonies (14) and were purified by alternate plating on mineral medium containing either P(3HV) or sodium valerate (0.15%, wt/vol). The 10 strains obtained were deposited in the Laboratorium voor Microbiologie Gent Culture Collection (LMG), Ghent, Belgium, as P. lemoignei strains. P. lemoignei LMG 22077T (T = type strain) was obtained from LMG.

PHA accumulation. PHA accumulation was determined by performing a gas chromatographic analysis of the corresponding 3-hydroxyethyl esters of lyophilized cells (4).
Fatty acid analysis. Strains were grown on Trypticase soy broth (BBL) supplemented with 1.5% (wt/vol) Bacto Agar (Difco) and 0.1% (wt/vol) sodium-3-hydroxybutyrate (Serva) for 3 days at 28°C. Fatty acid methyl esters were prepared and separated by gas-liquid chromatography as described previously (1), with some modifications (26). The Microbial Identification System (Microbial ID, Inc., Newark, Del.) software package was used to identify the fatty acids. The same software package was used to cluster the fatty acid methyl ester profiles by the unweighted pair group method of averages (37) of Euclidean distances, which were calculated for each pair of profiles.

Breathprinting with the Biolog system. Strains were grown on Delafield medium (7) supplemented with 0.3% (wt/vol) 3-hydroxybutyrate for 2 days at 28°C. Suspensions were prepared, and Biolog GN microplates (Biolog, Inc., Hayward, Calif.) were inoculated as recommended by the manufacturer. After 3 days of incubation at 28°C, the plates were read visually, and wells showing any color reaction, compared with the control well were interpreted as positive.

Plasmid analysis. A plasmid analysis was performed by the method of Kado and Liu (16). Plasmid preparations were loaded onto an 0.8% (wt/vol) agarose gel and stained with ethidium bromide after electrophoresis.

SDS-PAGE of whole-cell proteins. The bacterial cells in 2 ml stationary cultures grown with sodium valerate were harvested by centrifugation, resuspended in 0.2 ml of denaturant buffer, and boiled for 5 min. For SDS-PAGE, the method of Laemmli (19) was used. A 15-µl portion of each extract was loaded onto an SDS-12% (wt/vol) polyacrylamide gel. After electrophoresis, the proteins were stained with Coomassie blue and compared visually.

16S rDNA gene sequencing. The strains were incubated for 7 days in 5-ml portions of Trypticase soy broth (1.7% [wt/vol] Bacto Tryptone [Difco], 0.5%, [wt/vol] Bacto Soyone [Difco], 0.25% [wt/vol] Bacto Dextrose [Difco], 0.5% [wt/vol] NaCl, 0.25% [wt/vol] K2HPO4) supplemented with 0.1% (wt/vol) 3-hydroxybutyrate under aerobic conditions. The genomic DNA of each strain was extracted by the method of Wilson (43). The 16S rDNA was amplified by PCR as described by Karlson et al. (17). The PCR products were sequenced directly by using a Megacycle DNA terminator cycle sequencing kit (Applied Biosystems, Inc., Foster City, Calif.), and electrophoresis was performed with a model 373A automated sequencer (Applied Biosystems). The 16S rDNA sequences were aligned by using the sequence editing and analyzing program of Olsen (31) and reference sequences from members of the Proteobacteria obtained from the Ribosomal RNA Database Project (20). Conserved regions were used for the initial alignment. Alignment of variable regions was aided by the results of an analysis of the secondary structure. Overall similarity values, incorporating the Jukes and Cantor (15) correction factor, were calculated for sequence pair comparisons.

DNA base composition and DNA-DNA hybridizations. To prepare DNA, cells were grown at 28°C for 4 days in Roux flasks on minimal medium (7) supplemented with 0.3% (wt/vol) 3-hydroxybutyrate. DNA was prepared by the method of Marmur (22). The mean guanine-plus-cytosine (G+C) contents of DNAs were determined by the thermal denaturation method (8, 23). Levels of DNA-DNA binding, expressed as percentages, were determined spectrophotometrically by the initial renaturation rate method of De Ley et al. (9). Each value was the average of the values from two hybridization experiments. The total DNA concentration used was 59 µg/ml, and the optimal renaturation temperature, calculated from the G+C content with the equation of De Ley (8), was 77.3°C in 2% standard saline citrate buffer (SSC) (1 X SSC is 0.15 M NaCl plus 0.0015 M sodium citrate, pH 7).

Electron microscopy. Cells grown on minimal medium (35) supplemented with 0.3% (wt/vol) 3-hydroxybutyrate were negatively stained with 3% phosphotungstic acid and examined with a Phillips model EM 301 electron microscope operated at 80 kV.

Nucleotide sequence accession numbers. The 16S rDNA gene sequences of P. lemoignei LMG 2207T and strain A62 have been deposited in the EMBL data library under accession numbers X92555 and X92554, respectively.

RESULTS

Isolation of P(3HV)-degrading bacteria. After the enrichment procedure, 10 bacterial strains that are able to use P(3HV) as a sole source of carbon and energy were isolated on P(3HV)-containing media. Strains A51 (= LMG 16484), A52 (= LMG 16485), A53 (= LMG 16486), A58 (= LMG 16487), A60a (= LMG 16488), and A60b (= LMG 16489) were isolated from a box containing garden soil supplemented with broken Biopol bottles and incubated at 30°C. Strains A62 (= LMG 16480) and A64 (= LMG 16841) were isolated from a box containing soil from a meadow, and strains K21 (= LMG 16842) and K24 (= LMG 16843) were isolated from a box containing compost. Both of the latter boxes were supplemented with P(3HV)-containing C. violaceum cells and were incubated at room temperature. Like P. lemoignei LMG 2207T, these gram-negative, oxidase- and catalase-positive isolates grew slowly on solid mineral medium supplemented with valerate or 3-hydroxybutyrate, forming small, circular, cream-colored colonies which strongly adhered to the agar, and growth on butyrate (0.3%, wt/vol) was very poor. None of the new isolates or P. lemoignei LMG 2207T grew on rich media like nutrient broth (Oxoid) or Luria-Bertani medium (1% [wt/vol] tryptone [Oxoid], 0.5% [wt/vol] yeast extract [Oxoid], 1% [wt/vol] NaCl; pH 7.5) or with sugars, such as glucose (0.5%), (wt/vol) and fructose (0.5%, wt/vol), as sole carbon sources. However, all of the strains were capable of extracellular degradation of P(3HB) and P(3HV) and intracellular synthesis of P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). In the presence of tyrosine (0.05%, wt/vol), a brown pigment was produced by the 10 new strains and P. lemoignei LMG 2207T on media supplemented with P(3HB) but not on media supplemented with DL-3-hydroxybutyrate. Cells of all of these strains were motile, displaying alternating backward movement and forward movement. Electron micrographs of cells of strains A62 (Fig. 1), K24, and A51, as well as P. lemoignei LMG 2207T (data not shown), revealed the presence of a single monopolar inserted flagellum and electron transparent inclusions that might be P(3HB) granules. When enrichment for P(3HV)-degrading microorganisms was omitted and dilutions of soil samples were directly plated onto P(3HV) agar plates, three P(3HV)-degrading actinomycetes and two gram-negative strains, which clearly differed from P. lemoignei LMG 2207T, were isolated.

Characterization of the isolates by fatty acid analysis. The 10 new isolates were compared with P. lemoignei LMG 2207T by performing a fatty acid analysis. The fatty acid methyl ester compositions of the strains are shown in Table 1. The dendrogram obtained by clustering the profiles is shown in Fig. 2. The fatty acid methyl ester profiles of the 10 new isolates were very similar to each other and resembled the profile of P. lemoignei LMG 2207T. All of these organisms contain mainly hexadecenoic acid (16:1 w7 c16), hexadecanoic acid (16:0), octadecenoic acid (summed feature 7), and dodecanoic acid (12:0), as well as halogenated fatty acids (Table 1). The 10 new isolates clustered together at a Euclidean distance of 8 and grouped with the type strain at a Euclidean distance of 16. P. lemoignei LMG 2207T differed slightly because of its higher content of octadecenoic acid (summed feature 7).

Breathprinting with the Biolog system. The metabolic breathprints of the 10 new isolates and P. lemoignei LMG
very similar to the protein pattern of erol phosphate, glucose 1-phosphate, and glucose 6-phosphate, midine, and uridine, the phosphorylated chemicals DL-a-glyc-Tween 40, and Tween 80, the alcohols 2,3-butanediol and glycerol, the amides succinamic acid, glucuronamide, and alaninamide, the amines phenylethylamine, 2-aminoethanol, and putrescine, the aromatic chemicals inosine, urocanic acid, thyrate. None of the strains produced color reactions in the 10 new isolates were almost identical to each other and containing methylpyruvate, 3-hydroxybutyrate, and 4-hydroxybutyrate. The position of the double bond or cyclopropane ring is not known.

Table 1. Fatty acid methyl ester compositions of P(3HV)-degrading strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24 and P. lemoignei LMG 2207T

<table>
<thead>
<tr>
<th>Fatty acid methyl ester</th>
<th>No. of strains</th>
<th>% of total fatty acids</th>
<th>% of total fatty acids in P. lemoignei LMG 2207T</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:0</td>
<td>10</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>12:0</td>
<td>10</td>
<td>7.1</td>
<td>0.3</td>
</tr>
<tr>
<td>14:0</td>
<td>10</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>16:0</td>
<td>10</td>
<td>17.2</td>
<td>0.9</td>
</tr>
<tr>
<td>18:0</td>
<td>3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>14:1 ω5d</td>
<td>5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>16:1 ω7 cis</td>
<td>10</td>
<td>37.5</td>
<td>2.9</td>
</tr>
<tr>
<td>18:1 ω9 cis</td>
<td>2</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>17:0 cyclo d</td>
<td>9</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>10:0 3OH</td>
<td>10</td>
<td>6.1</td>
<td>0.7</td>
</tr>
<tr>
<td>12:0 3OH</td>
<td>10</td>
<td>8.2</td>
<td>0.3</td>
</tr>
<tr>
<td>14:0 2OH</td>
<td>10</td>
<td>6.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Summed feature 7</td>
<td>10</td>
<td>11.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

a Strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24.

b Number of strains that contain each fatty acid methyl ester.
c ND, not detected.
d The position of the double bond or cyclopropane ring is not known.

The protein patterns of P. lemoignei LMG 2207T were investigated by using Biolog GN microplates. All of the strains exhibited weak positive reactions in the wells containing methylypyruvate, 3-hydroxybutyrate, and 4-hydroxybutyrate. None of the strains produced color reactions in the presence of 28 carbohydrates, 22 other carboxylic acids, 20 amino acids, the polymers glycogen, α-cyclodextrin, dextrin, Tween 40, and Tween 80, the alcohols 2,3-butanediol and glycerol, the amides succinamic acid, glucuronamide, and alaninamide, the amines phenylethylamine, 2-aminoethanol, and putrescine, the aromatic chemicals inosine, urocanic acid, thymidine, and uridine, the phosphorylated chemicals DL-α-glycerol phosphate, glucose 1-phosphate, and glucose 6-phosphate, bromosuccinic acid, and monomethylsuccinate.

SDS-PAGE of whole-cell proteins

The protein patterns of the 10 new isolates were almost identical to each other and very similar to the protein pattern of P. lemoignei LMG 2207T (Fig. 3).

Plasmid analysis

The new isolates and P. lemoignei LMG 2207T were analyzed to determine the presence of circular plasmids. No plasmids were detected in strains A64, K21, and K24 and P. lemoignei LMG 2207T. Strains A51, A52, A53, A58, A60a, A60b, and A62 harbored a plasmid that was about 200 kbp long, and strains A51 and A58 contained an additional plasmid that was about 30 kbp long.

16S rDNA sequencing

The 16S rDNA genes from strain A62, a representative of the new P. lemoignei isolates, and from P. lemoignei LMG 2207T were sequenced. The 16S rDNAs of strain A62 and P. lemoignei LMG 2207T have a level of mutual sequence similarity and an overall level of similarity of 0.99. The sequences differ mainly between positions 73 and 97 (E. coli numbering [6]). The overall levels of similarity of the 16S rDNA sequences of these strains and 19 other representatives of the Proteobacteria are shown in Table 2. The 16S rDNA sequence analysis of P. lemoignei LMG 2207T and strain A62 revealed that these organisms belong to the beta subclass of the Proteobacteria. P. lemoignei LMG 2207T and strain A62 exhibited 0.94 overall similarity with Zoogloea ramigera ATCC 25935, 0.92 similarity with Burkholderia solanacearum, and 0.91 similarity with Alcaligenes eutrophus and Pseudomonas aeruginosa and levels of similarity lower than 0.91 with the other representatives of the Proteobacteria, including Z. ramigera ATCC 19544T (Table 2).

DNA base composition and DNA-DNA hybridization

The DNAs of P. lemoignei LMG 2207T and strains A62 and A52 had % G+C contents of 59.7, 58.9, and 59.5 mol%, respectively. The DNA-DNA binding ratios were 100% for strains A62 and A52, 61% for strain A62 and P. lemoignei LMG 2207T, and 60% for strain A52 and P. lemoignei LMG 2207T.

P. lemoignei was isolated and described more than 30 years ago and is recognized as one of the first known P(3HB)-degrading microorganisms [7]. Of the three strains isolated originally, only one was preserved. Since then, numerous PHA-degrading microorganisms have been isolated, but none of them had the characteristics of P. lemoignei. It was presumed that this species is not representative of the PHA-degrading
TABLE 2. Overall levels of similarity between the 16S rDNA sequences of P. lemoignei LMG 2207T and strain A62 and the 16S rDNA sequences of 19 representatives of the beta subclass of the Proteobacteria and E. coli.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>EMBL accession no.</th>
<th>Level of similarity to Strain LMG 2207T</th>
<th>Strain A62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas lemoignei</td>
<td>LMG 2207T</td>
<td>X92554</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Pseudomonas lemoignei</td>
<td>A62</td>
<td>X92555</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Zoogloea ramigera</td>
<td>ATCC 25935</td>
<td>X74914</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Zoogloea ramigera</td>
<td>ATCC 1954T</td>
<td>X74913</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>Burkholderia solanacearum</td>
<td>ATCC 11696T</td>
<td>X67036</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>ATCC 25416a</td>
<td>M22518</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Alcaligenes eutrophus</td>
<td>Unknown</td>
<td>M32021</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Alcaligenes faecalis</td>
<td>Unknown</td>
<td>M22467</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Pseudomonas pararhopogenus</td>
<td>ATCC 23061</td>
<td>X67037</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Rhodococcus tenus</td>
<td>DSM 109b</td>
<td>D16208</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Rubrivivax gelatinosus</td>
<td>ATCC 17011a</td>
<td>M34132</td>
<td>0.89</td>
<td>0.90</td>
</tr>
<tr>
<td>Comamonas testosteroni</td>
<td>ATCC 11996a</td>
<td>M11224</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Unknown</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Neisseria gonorhoeae</td>
<td>Unknown</td>
<td>M34130</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Azotobacter indiges</td>
<td>VB32</td>
<td>L15531</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Methylphosphus methylotrophus</td>
<td>ATCC 53528b</td>
<td>L15475</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Unknown</td>
<td>------</td>
<td>0.82</td>
<td>0.81</td>
</tr>
</tbody>
</table>

* See reference 32.
* See reference 6.

Microflora that occurs in the environment (27). By using an enrichment procedure in which P(3HV) was the sole source of carbon and energy, we succeeded in isolating from soils 10 strains that are able to degrade P(3HV) and P(3HB) in vitro and have cultural characteristics very similar to those of P. lemoignei LMG 2207T. Such strains could not be isolated when the enrichment procedure was omitted, and no other P(3HV)-degrading strains were isolated after enrichment. This indicates that the enrichment procedure in which P(3HV) granules are used as the sole source of carbon and energy seems to be especially appropriate for the isolation of P. lemoignei strains from soils.

To verify that the new isolates were P. lemoignei strains, they were compared with P. lemoignei LMG 2207T by performing fatty acid, protein, and plasmid analyses and by using breath-printing. The results clearly showed that the P(3HV)-degrading strains isolated in this study are phenotypically almost identical to each other and very similar to P. lemoignei LMG 2207T. The G+C contents of the DNA of strains A52 and A62 are very similar to the value obtained for P. lemoignei LMG 2207T (59.7 mol%) and the value published previously for P. lemoignei LMG 2207T by Delafield et al. (7) (58.2 mol%). A close phylogenetic relationship between the 10 new isolates and P. lemoignei was demonstrated by aligning the 16S rDNA sequences of representative strain A62 and P. lemoignei LMG 2207T; a level of 16S rDNA sequence similarity of more than 0.99 was obtained. The levels of hybridization between strain A52 and A62 DNAs and P. lemoignei LMG 2207T DNA were 60 and 61%, respectively. Therefore, we identified strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24 as P. lemoignei strains.

P. lemoignei is not an authentic member of the genus Pseudomonas, whose members belong to the gamma subclass of the Proteobacteria (38). It has been shown by rRNA-DNA hybridization that P. lemoignei is phylogenetically related to RNA group III of De Vos and De Ley (10). This group constitutes one of the branches within the beta subclass of the Proteobacteria (38) and includes microorganisms now classified as Burkholderia sp. and A. eutrophus. This finding is supported by our phylogenetic data. Strain A62 and P. lemoignei LMG 2207T exhibited more than 0.91 overall similarity in their 16S rDNA sequences to B. solanacearum and A. eutrophus and 0.94 overall similarity to Z. ramigera ATCC 25935. Strain ATCC 25935 (= IAM 12670) is not an authentic Zoogloea strain and is related to Burkholderia cepacia and A. eutrophus (36). However, the taxonomic homogeneity of the genus Burkholderia has been questioned, and the removal of B. solanacearum and Burkholderia pickettii from the genus has been proposed (12, 21). In contrast to Burkholderia species (including B. solanacearum and B. p. pickettii (12) and A. eutrophus (18), P. lemoignei is able to grow only on a very limited number of substrates. The hydroxylated fatty acid fraction of P. lemoignei cells contains 3-hydroxydecanoic acid (10:0 3OH), 3-hydroxydecanoic acid (12:0 3OH), and 2-hydroxytetradecanoic acid (14:0 2OH), while Burkholderia cells (including B. solanacearum and B. pickettii cells) typically contain 3-hydroxytetradecanoic acid (14:0 3OH) (12, 42, 44; this study). P. lemoignei may constitute a separate phylogenetic branch within the beta subclass of the Proteobacteria, but its phylogenetic relationships with other members of this branch have to be scrutinized further before any nomenclatural proposal can be formulated.

ACKNOWLEDGMENTS

Part of this work was supported by European Union ECLAIR grant AGRE.0006.C [II] and AIR2 grant CT93-1099 and by Deutsche Forschungsgemeinschaft grant DFG-152-2-2. D.J. and A.S. thank Wella AG for providing Biopol bottles. K.K. acknowledges the Fonds voor Geneeskundig Wetenschappelijk Onderzoek for personnel and research grants.

We are indebted to M. Hoppert, Institut für Mikrobiologie der Georg-August-Universität zu Göttingen, for preparing the electron micrographs.

REFERENCES

terization of the *Pseudomonas lemoignei* polyhydroxyalkanoate depoly-

14. Jendrossek, D., I. Knoke, R. H. Habibian, A. Steinbüchel, and H. G. Schle-
gel. 1993. Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and
puriﬁcation of novel PHB depolymerase of *Comamonas* sp. J. Environ.
Polymer Degrad. 1:53-63.

Press, New York.

J. D. Eliis. 1993. Two independently regulated cytochromes P-450 in a
Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-me-

18. Kersters, K., and J. De Ley. 1984. Genus *Alcaligenes* Castellani and Chal-

1993. Phylogenetic studies of the rRNA group II pseudomonads based on

deoxyribonucleic acid from its thermal denaturation temperature. J. Mol.
Biol. 5:119-118.

degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-

biodiversity among poly(3-hydroxyalkanoates) degrading streptomycetes us-
ing gas chromatographic analysis of fatty acids. Syst. Appl. Microbiol. 17:
601-612.

26. Mäller, B., and D. Jendrossek. 1993. Purification and properties of poly(3-
hydroxyalkanoic acid) depolymerase from *Pseudomonas lemoignei*. Appl.

27. Olsen, G. J. 1987. The earliest phylogenetic branchings: comparing rRNA-
based evolutionary trees inferred with various techniques. Cold Spring Har-

poly(3-hydroxyoctanoic acid) (PHOA) by bacteria: puriﬁcation and
properties of a PHOA depolymerase from *Pseudomonas ﬂuorescens* GK13.

poly(hydroxyalkanoate)-degrading bacteria and active site studies on the

fahren zur Kultur wasserstoffoxidierender Bakterien. Wachstumspﬂysiolog-

genus *Zooglea* and emendation of the genus. Int. J. Syst. Bacteriol. 43:826-
831.

numerical classiﬁcation. Freeman and Co., San Francisco.

classis nov., a name for the phylogenetic taxon that includes the “purple

and production of poly(3-hydroxyalkanoic acid) homopolymer by *Chromobac-

Komagata. 1994. Transfer of *Pseudomonas plantarii* and *Pseudomonas gla-
muc to Burkholderia as Burkholderia spp. and description of *Burkholderia

39. Wilson, K. 1987. Preparation of genomic DNA from bacteria, p. 2.4-1-2.4.2.
In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman,
Wiley, New York.

40. Yabuchi, E., Y. Kosako, H. Oyaizu, I. Yano, H. Hotta, Y. Hashimoto, T.
Ezaki, and M. Arakawa. 1992. Proposal of *Burkholderia* gen. nov. and
transfer of seven species of the genus *Pseudomonas* homology group II to the
new genus, with the type species *Burkholderia cepacia* (Palleroni and Holmes