Isolation and Identification of Poly(3-Hydroxyvalerate)-Degrading Strains of *Pseudomonas lemoignei*

Joris Mergaert,1* Andreas Schirmer,2 Lysiane Hauben,1,3 Margit Maus,3 Bart Hoste,1 K. Kersters,1 Dieter Jendrossek,2 and Jean Swings1

Laboratorium voor Microbiologie, Vakgroep Biochemie, Fysiologie en Microbiologie, Universiteit Gent, B-9000 Ghent, Belgium,1 and Instituut voor Mikrobiologie der Georg-August-Universität zu Göttingen, D-37077 Göttingen,2 and Gesellschaft für Biotechnologische Forschung, Abteilung Mikrobiologie, D-38124 Braunschweig,3 Germany

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that are synthesized and accumulated intracellularly under limiting growth conditions by a large variety of bacteria. Besides poly(3-hydroxybutyrate) [P(3HB)], polymers incorporating monomers other than 3-hydroxybutyrate have been detected. The monomer composition of the PHAs depends on the bacterial strain, as well as on the carbon sources supplied. The production of PHAs has been reviewed previously (2, 11, 39, 41). Because of their biodegradability, thermoplastic properties, and synthesis from renewable resources, PHAs are of biotechnological interest, and P(3HB) and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (3) have been commercialized as Biopol, an alternative to petrochemically derived, nongeodegradable plastics. The biodegradability of Biopol has been demonstrated in different natural environments, and a large variety of PHA-degrading microorganisms, including gram-negative and gram-positive bacteria, streptomycetes, and molds, have been isolated (5, 14, 24, 25, 27-29, 33, 34). One of the first P(3HB)-degrading microorganisms identified was isolated more than 30 years ago and was named *Pseudomonas lemoignei* (7). Three *P. lemoignei* strains were the predominant microorganisms after enrichment in liquid medium containing P(3HB) granules. Only the type strain of this taxon has been preserved, and no PHA-degrading *P. lemoignei* strains have been isolated since the first isolation. The type strain of the species is particularly interesting, since it produces at least five different extracellular depolymerases (13), one of which is specifically synthesized during growth on poly(3-hydroxyvalerate) [P(3HV)] or valerate (30). Other PHA-degrading bacteria apparently synthesize only one depolymerase (13). The type strain of *P. lemoignei* is specialized and utilizes homo- and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, their hydrolysis products, and a few organic acids (pyruvate, acetate, butyrate, valerate, succinate), but it is not able to grow on sugars, amino acids, or complex media (7).

In this paper a procedure for selective enrichment and isolation of PHA-degrading *P. lemoignei* strains, in which P(3HV) granules are used as the carbon source, is described. Ten new *P. lemoignei* isolates were identified and characterized by using fatty acid analysis, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of whole-cell proteins, the Biolog breathprinting system, 16s ribosomal DNA (rDNA) gene sequence analysis, DNA base composition analysis, DNA-DNA hybridization analysis, plasmid analysis, and conventional phenotypic characterization techniques.

Materials and Methods

Isolation of P(3HV)-degrading microorganisms. To enrich for P(3HV)-degrading microorganisms, soil or compost that was collected in or near Göttingen, Germany, was placed in boxes and supplemented with PHAs. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was added as buried Biopol bottles (Wella AG, Darmstadt, Germany), while P(3HV) was repeatedly added as broken cells of *Chromobacterium violaceum* DSM 3019 which had been cultivated under conditions that promoted polymer accumulation (40). The boxes were incubated at room temperature (18 to 25°C) or 30°C for several weeks. Diluted soil or compost suspensions in 0.9% (wt/vol) NaCl were used as inocula for 10-ml liquid cultures. After several days of aerobic incubation, clearing of the opaque P(3HV) suspensions was observed in most of the cultures. After a second incubation step performed with fresh medium under the same conditions, dilutions were streaked onto solid mineral medium containing either P(3HV) or sodium valerate (0.15%, wt/vol) P(3HV) as the sole source of carbon and energy (14). After several days of aerobic incubation, clearing of the opaque P(3HV) suspensions was observed in most of the cultures. After a second incubation step performed with fresh medium under the same conditions, dilutions were streaked onto solid mineral medium supplemeted with 0.3% (wt/vol) P(3HV) as the sole carbon source. P(3HV)-degrading bacteria were recognized by the appearance of clear halos surrounding the colonies (14) and were purified by alternate plating on mineral medium containing either P(3HV) or sodium valerate (0.15%, wt/vol). The 10 strains obtained were deposited in the Laboratorium voor Microbiologie Gent Culture Collection (LMG), Ghent, Belgium, as *P. lemoignei* strains. *P. lemoignei* LMG 2207T (T = type strain) was obtained from LMG.

PHA accumulation. PHA accumulation was determined by performing a gas chromatographic analysis of the corresponding 3-hydroxyethyl esters of lyophilized cells (4).
The same software package was used to cluster the fatty acid methyl ester profiles of 3-hydroxybutyrate (Serva) for 3 days at 28°C. Fatty acid methyl esters were incubated at room temperature. Like

Breathprinting with the Biolog system. Strains were grown on Delafield medium (7) supplemented with 0.3% (wt/vol) 3-hydroxybutyrate for 2 days at 28°C. Suspensions were prepared, and Biolog GM microplates (Biolog, Inc., Hayward, Calif.) were inoculated as recommended by the manufacturer. After 3 days of incubation at 28°C, the plates were read visually, and wells showing any color reaction, compared with the control well were interpreted as positive.

Plasmid analysis. A plasmid analysis was performed by the method of Kado and Liu (16). Plasmid preparations were loaded onto an 0.8% (wt/vol) agarose gel and stained with ethidium bromide after electrophoresis.

SDS-PAGE of whole-cell proteins. The bacterial cells in 2-ml stationary cultures grown with sodium valerate were harvested by centrifugation, resuspended in 0.2 ml of denaturation buffer, and boiled for 5 min. For SDS-PAGE, the method of Laemmli (19) was used. A 15-μl portion of each extract was loaded onto an SDS-12% (wt/vol) polyacrylamide gel. After electrophoresis, the proteins were stained with Coomassie blue and compared visually.

16S rDNA gene sequencing. The strains were incubated for 7 days in 5-ml portions of Trypticase soy broth (1.7% [wt/vol] Bacto Tryptone [Difco], 0.3%, [wt/vol] Bacto Soyone [Difco], 0.25% [wt/vol] Bacto Dextrose [Difco], 0.5% [wt/vol] NaCl; pH 7.5) or with sugars, such as glucose (0.5%, wt/vol) or 3-hydroxybutyrate under aerobic conditions. The genomic DNA of each strain was extracted by the method of Wilson (43). The 16S rDNA was amplified by PCR as described by Karlson et al. (17). The PCR products were sequenced directly using the Taq Dye Deoxy terminator cycle sequencing kit (Applied Biosystems, Inc., Foster City, Calif.), and electrophoresis was performed with a model 373A automated sequencer (Applied Biosystems). The 16S rDNA sequences were aligned by using the sequence editing and analyzing program of Olsen (31) and reference sequences from members of the Proteobacteria obtained from the Ribosomal RNA Database Project (20). Conserved regions were used for the initial alignment. Alignment of variable regions was aided by the results of an analysis of the secondary structure. Overall similarity values, incorporating the Jukes and Cantor (15) correction factor, were calculated for sequence pair comparisons.

RESULTS

Isolation of P(3HV)-degrading bacteria. After the enrichment procedure, 10 bacterial strains that are able to use P(3HV) as a sole source of carbon and energy were isolated on P(3HV)-containing media. Strains A51 (LMG 16484), A52 (LMG 16485), A53 (LMG 16486), A58 (LMG 16487), A66a (LMG 16488), and A60b (LMG 16489) were isolated from a box containing garden soil supplemented with broken Biopol bottles and incubated at 30°C. Strains A62 (LMG 16480) and A64 (LMG 16481) were isolated from a box containing soil from a meadow, and strains K21 (LMG 16842) and K24 (LMG 16843) were isolated from a box containing compost. Both of the latter boxes were supplemented with P(3HV)-containing C. violaceum cells and were incubated at room temperature. Like P. lemoignei LMG 2207T, these gram-negative, oxidase- and catalase-positive isolates grew slowly on solid mineral medium supplemented with valerate or 3-hydroxybutyrate, forming small, circular, cream-colored colonies which strongly adhered to the agar, and growth on butyrate (0.3%, wt/vol) was very poor. None of the new isolates or P. lemoignei LMG 2207T grew on rich media like nutrient broth (Oxoid) or Luria-Bertani medium (1% [wt/vol] tryptone [Oxoid], 0.5% [wt/vol] yeast extract [Oxoid], 1% [wt/vol] NaCl; pH 7.5) or with sugars, such as glucose (0.5%, wt/vol) and fructose (0.5%, wt/vol), as sole carbon sources. However, all of the strains were capable of extracellular degradation of P(3HB) and P(3HV) and intracellular synthesis of P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). In the presence of tyrosine (0.05%, wt/vol), a brown pigment was produced by the 10 new strains and P. lemoignei LMG 2207T on media supplemented with P(3HB) but not on media supplemented with DL-3-hydroxybutyrate. Cells of all of these strains were motile, displaying alternating backward movement and forward movement. Electron micrographs of cells of strains A62 (Fig. 1), K24, and A51, as well as P. lemoignei LMG 2207T (data not shown), revealed the presence of a single monopolar inserted flagellum and electron transparent inclusions that might be P(3HB) granules. When enrichment for P(3HV)-degrading microorganisms was omitted and dilutions of soil samples were directly plated onto P(3HV) agar plates, three P(3HV)-degrading actinomycetes and two gram-negative strains, which clearly differed from P. lemoignei LMG 2207T, were isolated.

Characterization of the isolates by fatty acid analysis. The 10 new isolates were compared with P. lemoignei LMG 2207T by performing a fatty acid analysis. The fatty acid methyl ester compositions of the strains are shown in Table 1. The dendraogram obtained by clustering the profiles is shown in Fig. 2. The fatty acid methyl ester profiles of the 10 new isolates were very similar to each other and resembled the profile of P. lemoignei LMG 2207T. All of these organisms contain mainly hexadecanoic acid (16:1 ω7 cis), hexadecenoic acid (16:0), octadecanoic acid (summed feature 7), and dodecanoic acid (12:0), as well as hydroxylated fatty acids (Table 1). The 10 new isolates clustered together at a Euclidean distance of 8 and grouped with the type strain at a Euclidean distance of 16. P. lemoignei LMG 2207T differed slightly because of its higher content of octadecenoic acid (summed feature 7).

Breathprinting with the Biolog system. The metabolic breathprints of the 10 new isolates and P. lemoignei LMG 2207T were compared with the Biolog plate from P. lemoignei LMG 2207T. The peaks for these strains were observed in the following metabolic categories: A62, K24, and A51 were positive for valerate and butyrate, and negative for acetate and pyruvate; A62, K24, and A51 were positive for valerate and butyrate, and negative for acetate and pyruvate; A62, K24, and A51 were positive for valerate and butyrate, and negative for acetate and pyruvate; A62, K24, and A51 were positive for valerate and butyrate, and negative for acetate and pyruvate; A62, K24, and A51 were positive for valerate and butyrate, and negative for acetate and pyruvate.

FIG. 1. Electron micrograph of a negatively stained cell of strain A62. Bar = 1 μm. (Prepared by M. Hoppert.)
TABLE 1. Fatty acid methyl ester compositions of P(3HV)-
degrading strains A51, A52, A53, A58, A60a, A60b, A62,
A64, K21, and K24 and P. lemoignei LMG 2207T.

<table>
<thead>
<tr>
<th>Fatty acid methyl ester</th>
<th>No. of strainsa</th>
<th>% of total fatty acids</th>
<th>% of total fatty acids in P. lemoignei LMG 2207T</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:0</td>
<td>10</td>
<td>1.0 0.1</td>
<td>NDb</td>
</tr>
<tr>
<td>12:0</td>
<td>10</td>
<td>7.1 0.3</td>
<td>5.3</td>
</tr>
<tr>
<td>14:0</td>
<td>10</td>
<td>2.6 0.1</td>
<td>1.3</td>
</tr>
<tr>
<td>16:0</td>
<td>10</td>
<td>17.2 0.9</td>
<td>12.8</td>
</tr>
<tr>
<td>18:0</td>
<td>3</td>
<td>0.3 0.5</td>
<td>ND</td>
</tr>
<tr>
<td>14:1 ω5d</td>
<td>5</td>
<td>0.4 0.5</td>
<td>ND</td>
</tr>
<tr>
<td>16:1 ω7 cis</td>
<td>10</td>
<td>37.5 2.9</td>
<td>39.3</td>
</tr>
<tr>
<td>18:1 ω9 cis</td>
<td>2</td>
<td>0.2 0.4</td>
<td>ND</td>
</tr>
<tr>
<td>17:0 cis</td>
<td>9</td>
<td>1.9 1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>10:0 3OH</td>
<td>10</td>
<td>6.1 0.7</td>
<td>3.6</td>
</tr>
<tr>
<td>12:0 3OH</td>
<td>10</td>
<td>8.2 0.3</td>
<td>5.7</td>
</tr>
<tr>
<td>14:0 2OH</td>
<td>10</td>
<td>6.3 0.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Summed feature 7</td>
<td>10</td>
<td>11.2 0.8</td>
<td>25.5</td>
</tr>
</tbody>
</table>

a Strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24.

b Number of strains that contain each fatty acid methyl ester.

c The position of the double bond or cyclopropane ring is not known.

d Fatty acids 18:1 ω7 cis, 18:1 ω9 trans, and 18:1 ω12 trans cannot be separated gas chromatographically by the Microbial Identification System and together are designated summed feature 7.

2207T were investigated by using Biolog GN microplates. All of the strains exhibited weak positive reactions in the wells containing methylpyruvate, 3-hydroxybutyrate, and 4-hydroxybutyrate. None of the strains produced color reactions in the presence of 28 carbohydrates, 22 other carboxylic acids, 20 amino acids, the polymers glycogen, α-cyclodextrin, dextrin, Tween 40, and Tween 80, the alcohols 2,3-butanediol and glycerol, the amides succinamic acid, glucuronamide, and alaninamide, the amines phenylethylamine, 2-aminoethanol, and putrescine, the aromatic chemicals inosine, urocanic acid, thymidine, and uridine, the phosphorylated chemicals Dl-α-glycerol phosphate, glucose 1-phosphate, and glucose 6-phosphate, bromosuccinic acid, and monomethylsuccinate.

SDS-PAGE of whole-cell proteins. The protein patterns of the 10 new isolates were almost identical to each other and very similar to the protein pattern of P. lemoignei LMG 2207T (Fig. 3).

Plasmid analysis. The new isolates and P. lemoignei LMG 2207T were analyzed to determine the presence of circular plasmids. No plasmids were detected in strains A64, K21, and K24 and P. lemoignei LMG 2207T. Strains A51, A52, A53, A58, A60a, A60b, and A62 harbored a plasmid that was about 200 kbp long, and strains A51 and A58 contained an additional plasmid that was about 30 kbp long.

16S rRNA sequencing. The 16S rRNA genes from strain A62, a representative of the new P. lemoignei isolates, and from P. lemoignei LMG 2207T were sequenced. The 16S rRNAs of strain A62 and P. lemoignei LMG 2207T have a level of mutual sequence similarity and an overall level of similarity of 0.99. The sequences differ mainly between positions 73 and 97 (Escherichia coli numbering [6]). The overall levels of similarity of the 16S rDNA sequences of these strains and 19 other representatives of the Proteobacteria are shown in Table 2. The 16S rDNA sequence analysis of P. lemoignei LMG 2207T and strain A62 revealed that these organisms belong to the beta subclass of the Proteobacteria. P. lemoignei LMG 2207T and strain A62 exhibited 0.94 overall similarity with Zoogloea ramigera ATCC 25935, 0.92 similarity with Burkholderia solanacearum, and 0.91 similarity with Alcaligenes eutrophus and Pseudomonas andropogonis and levels of similarity lower than 0.91 with the other representatives of the Proteobacteria, including Z. ramigera ATCC 19544T (Table 2).

DNA base composition and DNA-DNA hybridization. The DNAs of P. lemoignei LMG 2207T and strains A62 and A52 had % G+C contents of 59.7, 58.9, and 59.5 mol%, respectively. The DNA-DNA binding ratios were 100% for strains A62 and A52, 61% for strain A62 and P. lemoignei LMG 2207T, and 60% for strain A52 and P. lemoignei LMG 2207T.

FIG. 2. Dendrogram grouping strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24 and P. lemoignei LMG 2207T on the basis of their fatty acid methyl ester compositions.
TABLE 2. Overall levels of similarity between the 16S rDNA sequences of P. lemoigneii LMG 2207T and strain A62 and the 16S rDNA sequences of 19 representatives of the beta subclass of the Proteobacteria and E. coli

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Level of similarity to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strain LMG 2207T</td>
<td>Strain A62</td>
</tr>
<tr>
<td>Pseudomonas lemoigneii</td>
<td>LMG 2207T X92554</td>
<td>1.00 0.99</td>
</tr>
<tr>
<td>Pseudomonas lemoigneii</td>
<td>A62</td>
<td>0.99 1.00</td>
</tr>
<tr>
<td>Zoogloea ramigera</td>
<td>ATCC 25935 X74914</td>
<td>0.94 0.94</td>
</tr>
<tr>
<td>Zoogloea ramigera</td>
<td>ATCC 19544T X74913</td>
<td>0.90 0.89</td>
</tr>
<tr>
<td>Burkholderia solanacearum</td>
<td>ATCC 11696C X67036</td>
<td>0.92 0.92</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>ATCC 25416T M22518</td>
<td>0.90 0.90</td>
</tr>
<tr>
<td>Alcaligenes eutrophus</td>
<td>Unknown M32021</td>
<td>0.91 0.91</td>
</tr>
<tr>
<td>Alcaligenes faecalis</td>
<td>Unknown M22467</td>
<td>0.90 0.90</td>
</tr>
<tr>
<td>Pseudomonas andropogonis</td>
<td>ATCC 23061 X67037</td>
<td>0.91 0.91</td>
</tr>
<tr>
<td>Rhodococcus tenus</td>
<td>DSM 109</td>
<td>0.90 0.90</td>
</tr>
<tr>
<td>Rubrivivax gelatinosus</td>
<td>ATCC 17011T M34132</td>
<td>0.89 0.90</td>
</tr>
<tr>
<td>Comamonas testosteroni</td>
<td>ATCC 11996T M11224</td>
<td>0.89 0.89</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Unknown —a</td>
<td>0.88 0.89</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>Unknown M34130</td>
<td>0.88 0.88</td>
</tr>
<tr>
<td>Azotobacter indiges</td>
<td>VB32 L15531</td>
<td>0.88 0.88</td>
</tr>
<tr>
<td>Methylophillus methylotrophus</td>
<td>ATCC 53528T L15475</td>
<td>0.88 0.88</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Unknown —b</td>
<td>0.82 0.81</td>
</tr>
</tbody>
</table>

* See reference 32.
* See reference 6.

Microflora that occurs in the environment (27). By using an enrichment procedure in which P(3HV) was the sole source of carbon and energy, we succeeded in isolating from soils 10 strains that are able to degrade P(3HV) and P(3HB) in vitro and have cultural characteristics very similar to those of \(P. \) lemoigneii LMG 2207T. Such strains could not be isolated when the enrichment procedure was omitted, and no other P(3HV)-degrading strains were isolated at enrichment. This indicates that the enrichment procedure in which P(3HV) granules are used as the sole source of carbon and energy seems to be especially appropriate for the isolation of P. lemoigneii strains from soils.

To verify that the new isolates were P. lemoigneii strains, they were compared with P. lemoigneii LMG 2207T by performing fatty acid, protein, and plasmid analyses and by using breath-printing. The results clearly showed that the P(3HV)-degrading strains isolated in this study are phenotypically almost identical to each other and very similar to P. lemoigneii LMG 2207T. The G+C content of the DNA of strains A52 and A62 are very similar to the value obtained for P. lemoigneii LMG 2207T (59.7 mol%) and the value published previously for P. lemoigneii LMG 2207T by Delafield et al. (7) (58.2 mol%). A close phylogenetic relationship between the 10 new isolates and P. lemoigneii was demonstrated by aligning the 16S rDNA sequences of representative strain A62 and P. lemoigneii LMG 2207T; a level of 16S rDNA sequence similarity of more than 0.99 was obtained. The levels of hybridization between strain A52 and A62 DNAs and P. lemoigneii LMG 2207T DNA were 60 and 61%, respectively. Therefore, we identified strains A51, A52, A53, A58, A60a, A60b, A62, A64, K21, and K24 as P. lemoigneii strains.

P. lemoigneii is not an authentic member of the genus Pseudomonas, whose members belong to the gamma subclass of the Proteobacteria (38). It has been shown by rRNA-DNA hybridization that P. lemoigneii is phylogenetically related to RNA group III of De Vos and De Ley (10). This group constitutes one of the branches within the beta subclass of the Proteobacteria (38) and includes microorganisms now classified as Burkholderia sp. and A. eutrophus. This finding is supported by our phylogenetic data. Strain A62 and P. lemoigneii LMG 2207T exhibited more than 0.91 overall similarity in their 16S rDNA sequences to B. solanacearum and A. eutrophus and 0.94 overall similarity to Z. ramigera ATCC 25935. Strain ATCC 25935 (= IAM 12670) is not an authentic Zoogloea strain and is related to Burkholderia cepacia and A. eutrophus (36). However, the taxonomic homogeneity of the genus Burkholderia has been questioned, and the removal of B. solanacearum and Burkholderia pickettii from the genus has been proposed (12, 21). In contrast to Burkholderia species (including B. solanacearum and B. pickettii) (12, 21), A. eutrophus (18), P. lemoigneii is able to grow only on a very limited number of substrates. The hydroxylated fatty acid fraction of P. lemoigneii cells contains 3-hydroxydecanoic acid (10:0 3OH), 3-hydroxydecanoic acid (12:0 3OH), and 2-hydroxydecanoic acid (14:0 2OH), while Burkholderia cells (including B. solanacearum and B. pickettii cells) typically contain 3-hydroxydecanoic acid (14:0 3OH) (12, 42, 44; this study). P. lemoigneii may constitute a separate phylogenetic branch within the beta subclass of the Proteobacteria, but its phylogenetic relationships with other members of this branch have to be scrutinized further before any nomenclatural proposal can be formulated.

ACKNOWLEDGMENTS

Part of this work was supported by European Union ECLAIR grant AGRE.0006.C [HI and AIR2 grant CT93-1099 and by Deutsche Forschungsgemeinschaft grant DFG-152-2-2. D.J. and A.S. thank Wella AG for providing Biopol bottles. K.K. acknowledges the Fonds voor Geneeskundig Wetenschappelijk Onderzoek for personnel and research grants.

We are indebted to M. Hopter, Institut für Mikrobiologie der Georg-August-Universität zu Göttingen, for preparing the electron micrographs.

REFERENCES

12. Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebar, A. Willems, P. Segers, K. Kersters, T. Heulin, and M. P. Fernandez. 1995. Polybasid taxonomy in the genus Burkholderia leading to an emended description of
terization of the *Pseudomonas lemoignei* polyhydroxyalkanoate depoly-
14. Jendrossek, D., I. Knoke, R. H. Habibian, A. Steinbüchel, and H. G. Schie-
Polymer Degrad. 1:53-63.
Press, New York.
Biol. 5:109-118.
25. Mergeart, J., C. Anderson, A. Wouters, and J. Swings. 1994. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hy-
droxyvalerate) in compost. J. Environ. Polymer Degrad. 2:177-183.
26. Mergeart, J., C. Anderson, A. Wouters, and J. Swings. 1994. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hy-
27. Mergeart, J., A. Wouters, C. Anderson, and J. Swings. 1995. In situ biodegra-
dation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hy-
29. Muller, B., and D. Jendrossek. 1993. Purification and properties of poly(3-
hydroxyalkanoic acid) depolymerase from *Pseudomonas lopoideae*. Appl.
42. Wilson, K. 1987. Preparation of genomic DNA from bacteria, p. 2.4.1-2.4.4.
fer of seven species of the genus *Pseudomonas* homology group I to the new