1887

Abstract

Six moderately acidophilic, thermophilic bacterial strains with similar properties were isolated from geothermally heated water and sediment samples collected in New Zealand. These Gram stain-negative but Gram type-positive, rod-shaped bacteria formed oval terminal endospores. The cells were peritrichously flagellated and exhibited tumbling motility. At 60°C the pH range for growth was 3.8 to 6.8, and the optimum pH was 5.2 when the organisms were grown with xylose. At pH 5.2 the temperature range for growth was 35 to 66°C, and the optimum temperature was 60 to 63°C. The fermentation products from glucose or xylose were ethanol, acetate, lactate, CO, and H. The DNA G+C content was 34.5 to 35 mol%. On the basis of properties such as formation of elemental sulfur from thiosulfate, growth at acidic pH values at elevated temperatures, and the results of a 16S rRNA sequence comparison performed with previously validly published species belonging to the genus , we propose that strain JW/SL-NZ613 (T = type strain) and five similar strains isolated from samples collected in New Zealand represent a new species, . Strain JW/SL-NZ613 (= DSM 10170) is the type strain of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-388
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-388.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-388&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Current protocols in molecular biology2.4.1–2.4.5 Wiley Interscience; New York:
    [Google Scholar]
  2. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure. Arch. Microbiol 100:307–328
    [Google Scholar]
  3. Bonjour F., Aragno M. 1984; Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch. Microbiol 139:397–401
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254
    [Google Scholar]
  5. Burggraf S., Fricke H., Neuner A., Krisansson J., Rouviere P., Mandelco L., Woese C. R., Stetter K. O. 1990; Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst. Appl. Microbiol 13:263–269
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willims A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Dicks L. M. T., van Vuuren H. J. J., Dellaglio F. 1990; Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA-DNA hybridization. Int. J. Syst. Bacteriol 40:83–91
    [Google Scholar]
  9. Egelseer E., Schocher I., Sara M., Sleytr U. B. 1995; The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J. Bacteriol 177:1444–1451
    [Google Scholar]
  10. Freier D., Mothershed C. P., Wiegel J. 1988; Characterization of Clostridium thermocellum JW-20. Appl. Environ. Microbiol 54:204–211
    [Google Scholar]
  11. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent. Arch. Microbiol 136:254–261
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  13. Kondratieva E. N., Zacharova E. V., Duda V. I., Krivenko V. V. 1989; Thermoanaerobium lactoethylicum spec. nov., a new anaerobic bacterium from a hot spring of Kamchatka. Arch. Microbiol 151:117–122
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  15. Lauerer G., Kristjansson J. K., Langworthy T. A., Konig H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97℃. Syst. Appl. Microbiol 8:100–105
    [Google Scholar]
  16. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes and Clostridium thermohydrosulfimcum E100–69 as Thermoanaerobacter brockii comb, nov., Themtoanaerobacterium thermosulfurigenes comb, nov., and Thermoanaerobacter thermohydrosulfuricum comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J, Syst. Bacteriol 43:41–51
    [Google Scholar]
  17. Leigh J. A., Mayer F., Wolfe R. S. 1981; Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch. Microbiol 129:275–280
    [Google Scholar]
  18. Li Y., Mandelco L., Wiegel J. 1993; Isolation and characterization of a moderately thermophilic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol 43:450–460
    [Google Scholar]
  19. Lowe S. E., Jain M. K., Zeikus J. G. 1993; Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, and substrates. Microbiol. Rev 57:451–509
    [Google Scholar]
  20. McClung L. S. 1935; Studies on anaerobic bacteria. IV. Taxonomy of cultures of a thermophilic species causing “swells” of canned food. J. Bacteriol 29:189–203
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  22. Messner P., Hollaus F., Sleytr U. B. 1984; Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int. J. Syst. Bacteriol 34:202–210
    [Google Scholar]
  23. Messner P., Sleytr U. B. 1992; Crystalline bacterial cell-surface layers. Adv. Microb. Physiol 33:213–275
    [Google Scholar]
  24. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110℃. Syst. Appl. Microbiol 14:245–253
    [Google Scholar]
  25. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta themophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  26. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol 175:4772–4779
    [Google Scholar]
  27. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J. Gen. Microbiol 129:1149–1158
    [Google Scholar]
  28. Schleifer K.-H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  29. Segerer A. H., Trincone A., Gahrtz M., Stetter K. O. 1991; Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol 41:495–501
    [Google Scholar]
  30. Sharp R. J., Monster M. J. 1986 Biotechnological implications for microorganisms from extreme environments. 215–295 Herbert R. A., Codd G. A.ed Microbes in extreme environments Academic Press; London:
    [Google Scholar]
  31. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  32. Soh A. L. A., Ralambotiana H., Ollivier B., Prensier G., Tine E., Garcia J. L. 1991; Clostridium thermopalmarium sp. nov., a moderately thermophilic butyrate-producing bacterium isolated from palm wine in Senegal. Syst. Appl. Microbiol 14:135–139
    [Google Scholar]
  33. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res 26:31–43
    [Google Scholar]
  34. Stetter K. O. 1993 Life at the upper temperature border. 195–219 Tran Thanh Van J., Tran Thanh Van K., Mounolon J. C., Schneider J., McKay C.ed Frontiers of life Editions Frontieres; Gif-sur-Yvette, France:
    [Google Scholar]
  35. Valentine R. C., Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from E. coll. Biochemistry 7:2143–2152
    [Google Scholar]
  36. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol 7:235–240
    [Google Scholar]
  37. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol 31:88
    [Google Scholar]
  38. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium themoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol 5:255–260
    [Google Scholar]
  39. Wiegel J., Ljungdahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol 139:800–810
    [Google Scholar]
  40. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol 128:2261–2270
    [Google Scholar]
  41. Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol 42:263–269
    [Google Scholar]
  42. Zillig W., Gierl A., Schreiber G., Wunderl S., Janekovic D., Stetter K. O., Klenk H. P. 1983; The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol 4:79–87
    [Google Scholar]
  43. Zillig W., Stetter K. O., Schafer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:205–227
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-388
Loading
/content/journal/ijsem/10.1099/00207713-46-2-388
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error