Phylogenetic Analysis of the Genera *Alteromonas*, *Shewanella*, and *Moritella* Using Genes Coding for Small-Subunit rRNA Sequences and Division of the Genus *Alteromonas* into Two Genera, *Alteromonas* (Emended) and *Pseudoalteromonas* gen. nov., and Proposal of Twelve New Species Combinations

G. GAUTHIER,1 M. GAUTHIER,2 AND R. CHRISTEN1,*

Centre National de la Recherche Scientifique and Université Paris 6, Station Zoologique, Villefranche sur mer 06230,1 and Institut National de la Santé et de la Recherche Médicale U303, U.F.R. Médecine, Nice 06100.2 France

Small-subunit ribosomal DNA sequences were determined for 17 strains belonging to the genera *Alteromonas, Shewanella, Vibrio*, and *Pseudomonas*, and these sequences were analyzed by phylogenetic methods. The resulting data confirmed the existence of the genera *Shewanella* and *Moritella*, but suggested that the genus *Alteromonas* should be split into two genera. We propose that a new genus, *Pseudoalteromonas*, be created to accommodate 11 species that were previously *Alteromonas* species, including *Pseudoalteromonas atlantica* comb. nov., *Pseudoalteromonas aurantia* comb. nov., *Pseudoalteromonas carrageenovora* comb. nov., *Pseudoalteromonas citrea* comb. nov., *Pseudoalteromonas denitrificans* comb. nov., *Pseudoalteromonas espejiana* comb. nov., *Pseudoalteromonas haloplanktis* comb. nov. (with two subspecies, *Pseudoalteromonas haloplanktis* subsp. *haloplanktis* comb. nov. and *Pseudoalteromonas haloplanktis* subsp. *tetraodonis* comb. nov.), *Pseudoalteromonas lateviolacea* comb. nov., *Pseudoalteromonas migrificiens* comb. nov., *Pseudoalteromonas rubra* comb. nov., and one species that previously was placed in the genus *Pseudomonas, Pseudoalteromonas piscicida* comb. nov. We propose that *P. haloplanktis* (type strain, ATCC 14393) should be the type species of the genus *Pseudoalteromonas*. At this time the emended genus *Alteromonas* is restricted to a single species, *Alteromonas macleodii*.

Originally, the genus *Alteromonas* (4) consisted of four gram-negative, aerobic, nonpigmented, polarly flagellated species of marine bacteria, *Alteromonas macleodii* (the type species of the genus), *Alteromonas vaga*, *Alteromonas communis*, and *Alteromonas marinopraesens*. The name of the last species was later changed to *Alteromonas haloplanktis* (31). Subsequently, the genus *Alteromonas* was often used as a refuge for gram-negative, heterotrophic, aerobic bacteria with single polar flagella which differed from members of the genus *Pseudomonas* mainly in DNA G+C content (38 to 50 mol%, compared with 55 to 64 mol% for *Pseudomonas* spp.). As a result, 14 species were assigned to the genus *Alteromonas* (Table 1). In addition, on the basis of its nonfermentative metabolism, flagellar arrangement, and quinone composition, it was suggested that *Pseudomonas piscicida* (8) should be included in the genus *Alteromonas* (1, 6).

rRNA-DNA hybridization experiments (39) revealed that there was a high level of heterogeneity in the genus *Alteromonas* and that the following three rRNA groups could be distinguished: (i) *Alteromonas macleodii*, (ii) an *Alteromonas haloplanktis* cluster containing most *Alteromonas* species and *Pseudomonas piscicida*, and (iii) a group containing *Alteromonas putrefaciens* and *Alteromonas halomonas*. The above three rRNA groups were designated as (i), (ii), and (iii). The amplification reaction products were sequenced to confirm the relationship between these three rRNA groups.

Phylogenetic analysis. Sequences were aligned and studied by using a set of programs developed in our laboratory (available from R. Christen). In this study the nearly complete sequences of small-subunit ribosomal genes of 17 strains belonging to the genus *Alteromonas* and related genera (*Shewanella, Vibrio, Pseudomonas*) were analyzed by phylogenetic methods (the maximum-likelihood, maximum-parsimony, and neighbor-joining methods) to check the reliability of each topology. Each topology was then examined by performing a bootstrap analysis to assess its robustness.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The strains used in this study are listed in Table 2. The bacteria were grown at 22°C on marine agar 2216 (Difco Laboratories, Detroit, Mich.) or were stored frozen at −70°C in marine broth (Difco) supplemented with 20% (vol/vol) glycerol.

DNA amplification and sequencing. The method used to prepare bacterial DNA for PCR was derived from the method of Srijiram and Barker (35). DNA for PCR was derived from the method of Srijiram and Barker (35). Colonies grown on marine agar were suspended in 200 µl of lysis mixture (10 mM Tris [pH 8.0], 1 mM EDTA, 1% Triton X-100) and boiled for 5 min. Following a single chloroform extraction, 5 µl of supernatant was used to amplify small-subunit rDNA as previously described (32). The amplification reaction produced 1.5-kb DNA molecules. After purification on a 0.8% agarose gel, the PCR products were directly sequenced as described previously (32). Thus, we determined a small-subunit rDNA sequence corresponding to positions 29 to 1,425 of the *Escherichia coli* sequence for each representative of the genus *Alteromonas* and *Shewanella*, as well as *Pseudomonas piscicida* and *Vibrio marinus*. The sequence of one *Alteromonas haloplanktis* strain (ATCC 14393') [T = type strain] has been published previously (21).

Phylogenetic analysis. Sequences were aligned and studied by using a set of programs developed in our laboratory (available from R. Christen). In this study we determined the nearly complete sequences of small-subunit ribosomal genes of 17 strains belonging to the genus *Alteromonas* and related genera (*Shewanella, Vibrio, Pseudomonas*) to characterize more precisely the intra- and inter-generic relationships discussed above. These sequences were aligned by comparing them with other bacterial small-subunit ribosomal DNA (rDNA) sequences, and phylogenetic relationships were determined by using different phylogenetic methods (the maximum-likelihood, maximum-parsimony, and neighbor-joining methods) to check the reliability of each topology. Each topology was then examined by performing a bootstrap analysis to assess its robustness.
analysis we used the sequences determined in this study and small-subunit rDNA sequences of the following bacteria which were obtained from the EMBL: *Aeromonas alliosaerocarphila, Aeromonas caiviae, Aeromonas haloplanktis, Arsenophis nassauiae, E. coli, Haemophilus ducreyi, Hafnia alvei, Marinobacter hydrocarbonoclasticus, Marinomonas vaga, Pasteurella multocida, Photobacterium angustum, Vibrio nereis,* and an unnamed bacterium. The sequence of the unnamed bacterium was obtained by coupling PCR with molecular cloning; therefore, this sequence is the sequence of a bacterium that has not been isolated. The sequences of the following bacteria which were obtained from the EMBL: *sequence of small-subunit rDNA sequence of some undetermined nucleotides in the wild strain sequence. The following sequence domains used to construct the dendrogram shown in for Fig. 1 were sequence domains used to construct the dendrogram shown in for Fig. 1 were 1131 to 1252, and 1275 to 1426. The neighbor-joining method (33) was used in our preliminary analysis. The resulting topology was evaluated by the maximum-parsimony method through 100 bootstrap replications (heuristic search). Trees were drawn by using the njplot program of G. Olsen (University of Illinois, Urbana) and a Hewlett-Packard model 700 workstation, and for the maximum-parsimony analyses we used the PAUP program for the Macintosh (37). In the latter case, the analyses were performed by using the branch-and-bound option or the heuristic option when the branch-and-bound option was too time consuming. The robustness of each topology was confirmed by all methods and, more precisely, to the well-defined robust monophyletic taxon also designated the gamma 3 subgroup (15, 32, 42). The phylogenetic positions of the genera *Aeromonas* and *Shewanella* within the gamma 3 subgroup are shown in Fig. 1, an unrooted tree in which the results of a neighbor-joining analysis (topology shown in Fig. 1) are combined with the results obtained by maximum-likelihood and maximum-parsimony methods. We included representatives of all of the major taxa previously identified as members of the gamma 3 clade (the families *Vibrionaceae, Enterobacteriaceae, Pasteurellaceae,* and *Aeromonadaceae*) in these analyses.

The results of all of the analyses confirmed that the three *Shewanella* species form an independent clade that can be recognized as a genus (Fig. 1). All of these species formed a robust monophyletic taxon (as determined by all methods and 81% of the bootstrap replications) that branched deeply and did not cluster with any other sequence. *Shewanella henelai* and *Shewanella benthica* were closely related as determined by all three methods, a result supported by 92% of the bootstrap replications. Therefore, our data confirmed the results of previous rRNA-DNA hybridization experiments (39) and SS rRNA (28) and partial small-subunit rRNA sequence (24) analyses.

Figure 1 shows that the sequence of *V. marinus* did not cluster with the sequence of any other member of the *Vibrionaceae* available at this time (32). The separate position of *V. marinus* has also been observed in SS rRNA sequence studies.
TABLE 2. Bacterial strains for which complete or nearly complete small-subunit rDNA sequences are available

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Source*</th>
<th>Strain</th>
<th>Other designation</th>
<th>EMBL nucleotide sequence accession no.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alteromonas macleodii</td>
<td>IAM</td>
<td>IAM 12920T</td>
<td>ATCC27126T</td>
<td>X82145</td>
</tr>
<tr>
<td>Pseudoalteromonas atlantica</td>
<td>IAM</td>
<td>IAM 12927T</td>
<td>ATCC19262T</td>
<td>X82134</td>
</tr>
<tr>
<td>Pseudoalteromonas aurantia</td>
<td>ATCC</td>
<td>ATCC 33086T</td>
<td>ATCC43555T</td>
<td>X82136</td>
</tr>
<tr>
<td>Pseudoalteromonas carageenovora</td>
<td>IAM</td>
<td>IAM 12662T</td>
<td>ATCC29719T</td>
<td>X82137</td>
</tr>
<tr>
<td>Pseudoalteromonas citrea</td>
<td>NCIMB</td>
<td>NCIMB 1889T</td>
<td>ATCC29659T</td>
<td>X82143</td>
</tr>
<tr>
<td>Pseudoalteromonas espejana</td>
<td>ATCC</td>
<td>ATCC 43337T</td>
<td>ATCC29659T</td>
<td>X82143</td>
</tr>
<tr>
<td>Pseudoalteromonas haloplanktis subsp. haloplanktis</td>
<td>ATCC</td>
<td>ATCC 14393T</td>
<td>ATCC19375T</td>
<td>X82146</td>
</tr>
<tr>
<td>Pseudoalteromonas haloplanktis subsp. tetrodons</td>
<td>IAM</td>
<td>IAM14160</td>
<td>ATCC 51193</td>
<td>X82139</td>
</tr>
<tr>
<td>Pseudoalteromonas luteoviolacea</td>
<td>NCIMB</td>
<td>NCIMB 1893T</td>
<td>ATCC33492T</td>
<td>X82144</td>
</tr>
<tr>
<td>Pseudoalteromonas nigrifaciens</td>
<td>NCIMB</td>
<td>NCIMB 8614T</td>
<td>ATCC19375T</td>
<td>X82146</td>
</tr>
<tr>
<td>Pseudoalteromonas piscicida</td>
<td>Wild</td>
<td>ATCC</td>
<td>ATCC 15057T</td>
<td>X82125</td>
</tr>
<tr>
<td>Pseudoalteromonas rubra</td>
<td>ATCC</td>
<td>ATCC 29507T</td>
<td>ATCC29660T</td>
<td>X82140</td>
</tr>
<tr>
<td>Pseudoalteromonas undina</td>
<td>NCIMB</td>
<td>NCIMB 2128T</td>
<td>ATCC29660T</td>
<td>X82140</td>
</tr>
<tr>
<td>Shewanella benthica</td>
<td>ATCC</td>
<td>ATCC 43992T</td>
<td>ATCC19375T</td>
<td>X82131</td>
</tr>
<tr>
<td>Shewanella haneous</td>
<td>CIP</td>
<td>CIP 103207T</td>
<td>ATCC3224T</td>
<td>X82132</td>
</tr>
<tr>
<td>Shewanella parafacisci</td>
<td>ATCC</td>
<td>ATCC 8071T</td>
<td>ATCC1538T</td>
<td>X82134</td>
</tr>
<tr>
<td>Mortella marina</td>
<td>NCIMB</td>
<td>NCIMB 1144T</td>
<td>ATCC15381T</td>
<td>X82134</td>
</tr>
</tbody>
</table>

* Bacteria were obtained from the following collections: ATCC, American Type Culture Collection, Rockville, Md.; IAM, Institute of Applied Microbiology, Tokyo, Japan; NCIMB, National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland; CIP, Collection of Institut Pasteur, Paris, France.

a EMBL, European Molecular Biology Laboratory, Cambridge, United Kingdom.

(27, 28), partial small-subunit rRNA sequence studies (24), and DNA-DNA relatedness studies (36). Therefore, it has been proposed that *V. marinus* should be renamed *Mortiella marina* (36). Our complete *V. marinus* sequence matched a previously published partial sequence (24) but not the sequence determined by Ruimy et al. (32). As discussed by Ruimy et al., their sequence is probably not the sequence of *V. marinus*. On the basis of its true sequence, *V. marinus* branched deeply and did not cluster with any other genus, despite a slight association with the genus *Shewanella* and the "*Alteromonas*" cluster. The deep branching and the lack of association with any other genus confirmed that this bacterium should be placed in a separate genus. Therefore, we support the proposal to create the genus *Mortiella*, which contains the single species *Mortiella marina* (36).

Alteromonas macleodii clearly did not belong to the monophyletic taxon which included all of the other "*Alteromonas*" species (Fig. 1). *Alteromonas macleodii* branched deeply and did not cluster with any other organism whose sequence was available. All of the other "*Alteromonas*" species, *Pseudomonas piscicida*, and the unnamed bacterium whose nucleotide sequence accession number was Z55522 formed a robust monophyletic taxon that was identified by all three methods and was supported by 98% of the bootstrap replications (100% when *Mortiella [Vibrio] marinus* was excluded from the analysis [data not shown]). All of our molecular data showed that *Alteromonas macleodii* was distinct from all other "*Alteromonas*" species (2, 39) and suggested that there should be two genera for these species. Unfortunately, no other species that clusters with *Alteromonas macleodii* has been found; however, there is ample evidence that *Alteromonas macleodii* represents a distinct genus, although it differs phenotypically from the other "*Alteromonas*" species only in the range of substrates used (the range of substrates used by *Alteromonas macleodii* is greater than the range of substrates used by other "*Alter- monas*" species; it is able to use D-ribose, D-xylose, turanose, salicin, glucuronate, DL-glycerate, L-xylose, and L-ornithine as sole sources of carbon and energy). As *Alteromonas macleodii* is the type species of the genus, and Rule 39b of the International Code of Nomenclature of Bacteria (25) stipulates that the generic name must be retained for the type species, we propose that the genus *Pseudoalteromonas* gen. nov. should be created to accommodate the 12 other "*Alteromonas*" species.

Small-subunit rRNA sequences analyses revealed that there is an unambiguous affiliation between *Pseudomonas piscicida* and the new genus *Pseudoalteromonas*, which is consistent with rRNA cistron similarity data (39) and the isoprenoid quinone compositions of the organisms (1). Finally, because of its nonfermentative metabolism and flagellar arrangement, *Pseudomonas piscicida* appeared to resemble the majority of the species of this genus phenotypically (6). Because this bacterium undoubtedly belongs to the new genus *Pseudoalteromonas*, the generic name *Pseudomonas* should not be used for it any longer. Thus, it is appropriate to rename this bacterium *Pseudoalteromonas piscicida* gen. nov., comb. nov.

Within the new genus *Pseudoalteromonas*, phylogenetic relationships were difficult to resolve when distant outgroups were included, as in Fig. 1. Nevertheless, we distinguished (Fig. 1) two deeply branched species (the bacterium whose nucleotide sequence accession number was Z55522 and *Pseudoalteromonas denitrificans*) that were clearly outgroups with respect to all of the other species (as determined by all three methods and 73% of the bootstrap replications). A more detailed phylogenetic analysis of the *Pseudoalteromonas* cluster was performed by using *Pseudoalteromonas denitrificans* as the outgroup (Fig. 2). The new genus *Pseudoalteromonas* could be divided into the following four monophyletic taxa, which were identified by all three phylogenetic methods: (i) *Pseudoalteromonas denitrificans*; (ii) two pigmented species, *Pseudoalteromonas citrea* and *Pseudoalteromonas aurantia* (100% of the bootstrap values); (iii) three other pigmented species, *Pseudoalteromonas piscicida*, *Pseudoalteromonas rubra*, and *Pseudoalteromonas luteoviolacea* (98% of the bootstrap values); and (iv) all nonpigmented *Pseudoalteromonas* species (84% of the bootstrap values). The last group included closely related species, and the phylogenetic relationships of these taxa were difficult to determine on the basis of small-subunit rDNA sequences. Within the nonpigmented *Pseudoalteromonas*...
FIG. 1. Phylogenetic positions of Alteromonas, Moritella, and Shewanella species within the gamma 3 subgroup of the phylum Proteobacteria. An unrooted phylogenetic tree was obtained by performing a neighbor-joining analysis; branches that were significantly positive at a level of P < 0.01 as determined by a maximum-likelihood method are indicated by two asterisks. There are numbers above the branches that were also identified by the maximum-parsimony method (most parsimonious tree), and these numbers indicate how the branches were supported by the bootstrap analysis results. The sequences of the underlined species were determined in this study. Marizobacter hydrocarbonoclasticus and Marinomonas vagas were used as outgroups for the gamma 3 subgroup of the Proteobacteria.

As species group, DNA-DNA hybridization experiments revealed that Pseudoalteromonas haloplanktis ATCC 14393T and Pseudoalteromonas haloplanktis subsp. tetradonis ATCC 51193 exhibited levels of relatedness ranging from 82 to 84% (2). Considering that there were a number of differences between the small-subunit rDNA sequences of these organisms (14 differences in 1,429 nucleotides), that biochemical analyses revealed a number of traits which can be used to differentiate these taxa (Table 3), and that their level of genomic DNA relatedness is less than 85%, we propose that they should be placed in different subspecies. Thus, we propose that strain ATCC 51193 is a Pseudoalteromonas haloplanktis subsp. tetradonis comb. nov. strain and that strain ATCC 14393T is a Pseudoalteromonas haloplanktis subsp. haloplanktis comb. nov. strain.

We propose that Pseudoalteromonas haloplanktis (type strain, ATCC 14393) should be the type species of the genus Pseudoalteromonas because (i) it was the first species described in this new genus (31), (ii) it has been used more widely than any other species for laboratory studies of marine bacteria (13,
29, 38), (iii) it is nonpigmented (most likely an ancestral characteristic of this genus), and (iv) it is centrally located in molecular phylogenies.

Finally, the bacterium whose sequence has been deposited under accession number Z25522 in the EMBL data bank, which has not been isolated in culture yet, clustered with the new genus Pseudoalteromonas, but a name cannot be proposed since the phenotype of this organism is not known.

Description of the genus Pseudoalteromonas gen. nov.

Pseudoalteromonas (Pseu. do. al. te. ro. mon' as. Gr. adj. pseudes, false; L.n. Alteromonas, genus of gram-negative, aerobic, marine bacteria; L.n. Pseudoalteromonas, false Alteromonas). The phenotypic description of the genus Pseudoalteromonas is the same as the description published previously in Bergey's Manual of Systematic Bacteriology (6) and The Prokaryotes (20) for the genus Alteromonas, except for traits that are specific to Alteromonas macleodii (see below). The cells of all Pseudoalteromonas species are gram-negative, non-sporforming, straight or curved rods that are 0.2 to 1.5 by 1.8 to 3 μm. The cells of most species are motile by means of single unsheathed polar flagella; Pseudoalteromonas luteoviolacea and Pseudoalteromonas denitrificans have sheathed flagella. Not luminescent. Several species produce pigments. Strictly aerobic. Chemoorganotrophs with respiratory but not fermentative metabolism. Oxidase positive. Catalase activity is generally weak and irregular. All species grow at 20°C. Only one species (Pseudoalteromonas denitrificans) is capable of denitrification. None of the strains has a constitutive arginine dihydrolase system. Strains do not accumulate poly-β-hydroxybutyrate. All species require a seawater base for growth. Many strains require organic growth factors. The following combination of properties is found in all 12 known species: positive for gelatinase, lipase, lecinthinase, and DNase activities and utilization of D-glucose as a sole source of carbon; and negative for utilization of D-ribose, L-rhamnose, turanose, salicin, D-glucconate, glucuronate, D-l-glycerate, cinchonol, sorbitol, mesoinositol, adonitol, L-valine, L-orotic acid, and m-hydroxybenzoate. The G+C content of the DNA ranges from 37 to 50 mol%.

The type species is Pseudoalteromonas haloplanktis; the type strain of this species is strain ATCC 14393 (= strain 215 of Baumann et al. [4]).

In addition to the type species, the genus comprises Pseudoalteromonas atlantica (3), Pseudoalteromonas aurantia (19), Pseudoalteromonas carrageenovora (3), Pseudoalteromonas citrea (17), Pseudoalteromonas denitrificans (12), Pseudoalteromonas espejiana (9), Pseudoalteromonas luteoviolacea (18), Pseudoalteromonas nigriplacentis (5), Pseudoalteromonas pisci-
cida (7), Pseudoalteromonas rubra (16), and Pseudoalteromonas undina (9).

Description of Pseudoalteromonas haloplanktis subsp. halo-
planktis (ZoBell and Upham) comb. nov. The description of Pseudoalteromonas haloplanktis subsp. haloplanktis comb. nov.
TABLE 3. Characteristics that differentiate *Pseudoalteromonas haloplanktis* subsp. *haloplanktis* and *Pseudoalteromonas haloplanktis* subsp. *tetradonis*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pseudoalteromonas haloplanktis subsp. haloplanktis</th>
<th>Pseudoalteromonas haloplanktis subsp. tetradonis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanin-like dark pigment</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Urease activity</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Litmus milk coagulation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptanoate</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3,4-Dihydroxybutyrate</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D-Malate</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L-Lysine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L-Arginine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D-Glucosamine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N-Acetylt-glucosamine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Succrose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Threitol</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

* Data from reference 3.

is identical to the description given by ZoBell and Upham (45). The type strain is strain ATCC 14392.

Description of Pseudoalteromonas haloplanktis subsp. *tetradonis* (Simidu, Kita-Tsukamoto, Yasumoto, and Yotsu) comb. nov. The description of *Pseudoalteromonas haloplanktis* subsp. *tetradonis* comb. nov. is identical to the description given by Simidu et al. (34). The type strain is strain ATCC 51193.

Description of Pseudoalteromonas atlantica (Akagawa-Matsushita, Matsuo, Koga, and Yamashita) comb. nov. The description of *Pseudoalteromonas atlantica* comb. nov. is identical to the description given by Akagawa-Matsushita et al. (3). The type strain is strain ATCC 19262.

Description of Pseudoalteromonas aurantia (Gauthier and Breittmayer) comb. nov. The description of *Pseudoalteromonas aurantia* comb. nov. is identical to the description given by Gauthier and Breittmayer (19). The type strain is strain ATCC 33046.

Description of Pseudoalteromonas carrageenovora (Akagawa-Matsushita, Matsuo, Koga, and Yamashita) comb. nov. The description of *Pseudoalteromonas carrageenovora* comb. nov. is identical to the description given by Akagawa-Matsushita et al. (3). The type strain is strain ATCC 43555.

Description of Pseudoalteromonas citrea (Gauthier) comb. nov. The description of *Pseudoalteromonas citrea* comb. nov. is identical to the description given by Gauthier (17). The type strain is strain ATCC 29719.

Description of Pseudoalteromonas denitrificans (Enger, Nygard, Solberg, Schei, Nielsen, and Dundas) comb. nov. The description of *Pseudoalteromonas denitrificans* comb. nov. is identical to the description given by Enger et al. (12). The type strain is strain ATCC 43337.

Description of Pseudoalteromonas espejiana (Chan, Baumann, Garza, and Baumann) comb. nov. The description of *Pseudoalteromonas espejiana* comb. nov. is identical to the description given by Chan et al. (9). The type strain is strain ATCC 29659.

Description of Pseudoalteromonas luteoviolacea (Gauthier) comb. nov. The description of *Pseudoalteromonas luteoviolacea* comb. nov. is identical to the description given by Gauthier (18). The type strain is strain ATCC 33492.

Description of Pseudoalteromonas nigrifaciens (White) comb. nov. The description of *Pseudoalteromonas nigrifaciens* comb. nov. is identical to the description given by White (41). The type strain is strain ATCC 19375.

Description of Pseudoalteromonas rubra (Gauthier) comb. nov. The description of *Pseudoalteromonas rubra* comb. nov. is identical to the description given by Gauthier (16). The type strain is strain ATCC 29570.

Description of Pseudoalteromonas undina (Chan, Baumann, Garza, and Baumann) comb. nov. The description of *Pseudoalteromonas undina* comb. nov. is identical to the description given by Chan et al. (9). The type strain is strain ATCC 29660.

Emended description of the genus *Alteromonas*. Gram-negative, non-spore-forming straight rods that are 0.7 to 1 μm in diameter and 2 to 3 μm long. Motile by means of a single unsheathed polar flagellum. Not luminescent and not pigmented. Strictly aerobic. Chemooorganotroph with respiratory but not fermentative metabolism. Oxidase positive and catalase negative. Growth occurs at 20 to 35°C but not at 4°C. Does not denitrify. No consitutive arginine dilydrolyase system. Does not accumulate poly-β-hydroxybutyrate from the monomer β-hydroxybutyrate. Requires a seawater base for growth, but not organic growth factors. The G+C content of the DNA is 44 to 47 mol%.

The type species is *Alteromonas macleodii*, whose type strain is strain ATCC 27126 (= strain 107 of Baumann et al. [4]).

The characteristics of the type species are the same as the characteristics of the genus.

ACKNOWLEDGMENTS

We are grateful to M. Akagawa-Matsushita (University of Occupational and Environmental Health, Kitakyushu, Japan) for supplying some *Alteromonas* strains.

This research was supported by grants from the Institut Français de Recherche pour l’Exploitation de la Mer (France) and BioMérieux (France).

REFERENCES

VOL. 45, 1995 DIVISION OF THE GENUS ALTEROMONAS

