Phylogenetic Position of *Cowdria ruminantium* (Rickettsiales) Determined by Analysis of Amplified 16S Ribosomal DNA Sequences

ARNOUD H. M. VAN VLIET,1 FRANS JONGEJAN,2 AND BERNARD A. M. VAN DER ZEIJST1

Departments of Bacteriology1 and Parasitology,2 Institute of Infectious Diseases and Immunology, School of Veterinary Medicine, University of Utrecht, P. O. Box 80.165, 3508 TD Utrecht, The Netherlands

The 16S ribosomal DNA sequence of *Cowdria ruminantium*, the causative agent of heartwater disease in ruminants, was determined. An analysis of this sequence showed that *C. ruminantium* forms a tight phylogenetic cluster with the canine pathogen *Ehrlichia canis* and the human pathogen *Ehrlichia chaffeensis*. Although a close relationship between the genus *Cowdria* and several members of the tribe *Ehrlichiae* has been suspected previously, the tight phylogenetic cluster with *E. canis* and *E. chaffeensis* is surprising in view of known differences in host preference and target cells.

The rickettsia *Cowdria ruminantium* is the causative agent of heartwater, a tick-borne disease of wild and domestic ruminants. This disease is endemic in sub-Saharan Africa (28). Recently, *Cowdria ruminantium* has also been detected in the Caribbean region (28). In view of the continuing spread of the African tick *Amblyomma variegatum* in the Caribbean (29), heartwater may become a serious threat to livestock on the American mainland (2).

The genus *Cowdria* is currently classified in the tribe *Ehrlichiae* in the order Rickettsiales, together with the genera *Ehrlichia* and *Neorickettsia* (33). The members of the genus *Cowdria* share antigenic determinants with several members of the genus *Ehrlichia* (5, 13, 17) and also with members of the genus *Chlamydia* (11). A recent electron microscopic study of the multiplication of *Cowdria* cells in cultured bovine umbilical endothelial cells showed that the genus *Cowdria* has developmental stages that resemble those of chlamydial species (14). It has been assumed that the developmental cycle consists of an extracellular stage (extracellular bodies) and an intracellular stage (reticulate bodies). A phylogenetic study of the 16S ribosomal DNA (rDNA) of *Cowdria ruminantium* was initiated to determine the taxonomic relationship of the genus *Cowdria with Ehrlichia* and *Chlamydia* species more precisely.

The Senegal stock (12) of *Cowdria ruminantium* was cultured in bovine umbilical endothelial cells as described previously (10). *Escherichia coli* K-12 strain PC2495, an *hsdS recA* derivative of strain JM101 (36), was used for the propagation of PBS(−) phagemid and derived clones (Stratagene, La Jolla, Calif.) and was grown overnight at 37°C in Terrific Broth (27) supplemented with 100 μg of ampicillin per ml.

Genomic DNA for polymerase chain reaction amplification was extracted from the extracellular body-containing supernatant of an infected 162-cm² culture (infection score, 2+) (10). The supernatant was centrifuged at 15,000 × g for 15 min, the extracellular bodies were suspended in 1 ml of TEG buffer (25 mM Tris-HCl [pH 8.0], 10 mM EDTA, 50 mM glucose) supplemented with 4 mg of lysozyme per ml, and the preparation was incubated for 15 min at room temperature. Sodium dodecyl sulfate and proteinase K were subsequently added to final concentrations of 0.5% and 400 μg/ml, respectively, and incubation was continued for 1 h at 55°C. The DNA was precipitated with isopropanol and then suspended in H₂O.

The 16S rDNA of *Cowdria* cells was amplified in a total volume of 100 μl by using the terminal primers ID1 and rD1 (30) and *Taq* polymerase (Promega, Madison, Wis.) under conditions described elsewhere (30). The amplification products were characterized by agarose gel electrophoresis. The 1.5-kb 16S rDNA fragment was purified by using a GeneClean kit (Bio 101, La Jolla, Calif.) and was made blunt ended by incubating it for 15 min at 37°C with *E. coli* DNA polymerase I without deoxynucleoside triphosphates and then at 37°C for 15 min with deoxynucleoside triphosphates at concentrations of 1.67 mM (34). The DNA was phenol extracted, ethanol precipitated, and ligated into the EcoRV restriction site of PBS by using T4 DNA ligase. Plasmid DNAs of clones were purified by using the alkaline lysis method followed by cesium chloride-ethidium bromide density gradient centrifugation (23).

The nucleotide sequences of both strands of two cloned amplification products (clones pCRS2 and pCRS5) were determined by using the dideoxy chain termination method (24) and [α-32P]dATP. Sequencing reactions were carried out by using a T7 sequencing kit (Pharmacia, Uppsala, Sweden) according to the manufacturer's instructions. The primers used for the sequencing of the 16S rDNA, both forward and reverse, have been described previously (30). A discrepancy between the sequences of clones pCRS2 and pCRS5 was detected at position 1447 (G and A, respectively). This part of the sequence was also determined for two other clones (pCRS7 and pCRS8), which were derived from a different amplification reaction. Both sequences had G at this position. Therefore, we decided to use G at position 1447 for the phylogenetic analyses. The sequence that was determined in this way is shown in Fig. 1.

Aligned 16S rRNA sequences of *E. coli*, *Chlamydia psittaci*, and the alpha bacteria were obtained from the small-ribosomal-subunit RNA data base (R. De Wagter, University of Antwerp, Antwerp, Belgium) (20). Other 16S rRNA sequences were obtained from the EMBL and GenBank data bases. The 16S rRNA sequences of *Cowdria ruminantium*, *Anaplasma marginale* (30), and the *Ehrlichia* species (1) were aligned with the small-ribosomal-subunit RNA align-
FIG. 1. Nucleotide sequence of the 16S rRNA gene of *Cowdria ruminantium*. The nucleotide sequences of the polymerase chain reaction primers that were used to amplify the sequenced fragment are not shown.

The phylogenetic analyses which we performed were distance matrix and parsimony analyses, as described in the Felsenstein-Phylip package, version 3.3 (8). The treeing algorithms that assumed no evolutionary clock which we used with the distance matrix were the Fitch (9), NJTree (22), and UPGMA (26) algorithms. A treeing algorithm that assumed an evolutionary clock which we used with the distance matrix was the Kitsch program (9). The evolutionary distance trees that were generated by these programs and the trees that were generated by the parsimony analysis program DNAPars (7) were not significantly aberrant from the tree shown in Fig. 2. This evolutionary distance tree was generated by using the distance matrix from the analyses performed without a sequence mask (Table 1), using the Fitch program.

An analysis of the helices between positions 180 and 220 (E. coli numbering) (20) indicated that the genus *Cowdria* is related to the alpha subdivision of the purple bacteria (35). The sequence signature analysis showed that the 16S rRNA sequence of the genus *Cowdria* matches the signature sequences of the alpha subgroup of the purple bacteria in 58 of 66 positions (35), and similarity data and evolutionary distance data showed that the genus *Cowdria* is related to other
members of the order *Rickettsiales* within the alpha subdivision of the purple bacteria. The closest relatives of the genus *Cowdria* are *Ehrlichia* canis, the causative agent of canine ehrlichiosis (21), and the recently described human pathogen *Ehrlichia chaffeensis* (1, 3) (Fig. 2). The members of this phylogenetic cluster exhibited a level of sequence identity of 97 to 98%, which was greater than the level of sequence identity between the 16S rRNAs of two species of the genus *Chlamydia* (95.5%) (32). More distantly related (92% sequence identity) are the granulocytic members of the tribe *Ehrlichiae*, *Ehrlichia phagocytophila* and *Ehrlichia equi* (which have recently been reported to be members of the same species) (1), and the erythrocyte-borne *Rickettsia* *Anaplasma marginale*. Sequence signatures that link the genus *Cowdria* with the genus *Ehrlichia* and with *Anaplasma marginale* and distinguish the genus *Cowdria* from a set of other bacteria belonging to the alpha subdivision are shown in Table 2.

The genus *Ehrlichia* has been reported previously to be phylogenetically diverse (1). The close relationship among the genus *Cowdria*, *Ehrlichia canis*, and *Ehrlichia chaffeensis* was not expected on the basis of host preference and target cells. Members of the genus *Cowdria* infect endothelial cells of capillaries and larger blood vessels (28) and to a lesser extent granulocytes (18), whereas *Ehrlichia canis* infects only canine monocyes (21). Although the target cells for *Ehrlichia chaffeensis* are not yet known (3), morulae that resemble ehrlichial inclusions have been reported in human monocyes (19).

The results of studies on the serological cross-reactivity between members of the genus *Cowdria* and members of the tribe *Ehrlichiae* support the phylogenetic relationship which we observed. For instance, cross-reactive antibodies have been reported between members of the genus *Cowdria* and *Ehrlichia canis*, *Ehrlichia equi* (17), or *Ehrlichia phagocytophila* (13), but not between members of the genus *Cowdria* and the more distantly related species *Ehrlichia risticii* and *Ehrlichia sennetsu* (17). *Cowdria* antigens have been used to detect antibodies to *Ehrlichia canis* by immunofluorescence (6). Although studies on possible serological cross-reactivity between the genus *Cowdria* and *Ehrlichia chaffeensis* have not been conducted, it is known that *Ehrlichia canis* and *Ehrlichia chaffeensis* are serologically strongly cross-reactive, both in immunofluorescence tests and in Western blotting tests (3, 19). Moreover, *Ehrlichia canis* antigen can be used to detect human ehrlichiosis, which is presumably caused by *Ehrlichia chaffeensis* (4).

TABLE 2. Sequence signature positions that link the genera *Cowdria* and *Ehrlichia* with *Anaplasma marginale* and distinguish this group from other alpha subgroup species

<table>
<thead>
<tr>
<th>Position in 16S rDNA*</th>
<th>Cowdria, Ehrlichia, and A. marginale</th>
<th>Other alpha bacteria*</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>U</td>
<td>C</td>
</tr>
<tr>
<td>829</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>859</td>
<td>U</td>
<td>C</td>
</tr>
<tr>
<td>890</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>904</td>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>929</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1163</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1246</td>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>1388</td>
<td>U</td>
<td>C</td>
</tr>
</tbody>
</table>

* Position (E. coli numbering) (20) at which the 16S rRNA sequences of *Cowdria*, *Ehrlichia*, and *A. marginale* have a common composition that differs from the common composition of a collection of 10 16S rDNA sequences from other bacteria belonging to the alpha subdivision of the purple bacteria.

* The alpha bacteria which we used were *Agrobacterium tumefaciens*, *Aquaspirillum magnetotacticum*, *Brucella abortus*, *Hyphomicrobium vulgaris*, *Rhodobacter capsulatus*, *Rhodococcus rhodochrous*, *Rhodopseudomonas acidophila*, *Rickettsia prowazekii*, *Rickettsia rickettsii*, *Rickettsia typhi*, and *Rochalimaea quintana*.

The alpha bacteria which we used were *Agrobacterium tumefaciens*, *Aquaspirillum magnetotacticum*, *Brucella abortus*, *Hyphomicrobium vulgaris*, *Rhodobacter capsulatus*, *Rhodococcus rhodochrous*, *Rhodopseudomonas acidophila*, *Rickettsia prowazekii*, *Rickettsia rickettsii*, *Rickettsia typhi*, and *Rochalimaea quintana*.

The alpha bacteria which we used were *Agrobacterium tumefaciens*, *Aquaspirillum magnetotacticum*, *Brucella abortus*, *Hyphomicrobium vulgaris*, *Rhodobacter capsulatus*, *Rhodococcus rhodochrous*, *Rhodopseudomonas acidophila*, *Rickettsia prowazekii*, *Rickettsia rickettsii*, *Rickettsia typhi*, and *Rochalimaea quintana*.

The alpha bacteria which we used were *Agrobacterium tumefaciens*, *Aquaspirillum magnetotacticum*, *Brucella abortus*, *Hyphomicrobium vulgaris*, *Rhodobacter capsulatus*, *Rhodococcus rhodochrous*, *Rhodopseudomonas acidophila*, *Rickettsia prowazekii*, *Rickettsia rickettsii*, *Rickettsia typhi*, and *Rochalimaea quintana*.
found no significant phylogenetic relationship (Fig. 2 and Table 1). The tight clustering of the genus *Cowdria* with *Ehrlichia canis* and *Ehrlichia chaffeensis* indicates that the present subdivision of the tribe *Ehrlichiae* needs readjustment. Before this matter can be fully addressed, the 16S rRNA sequences of other stocks of *Cowdria* strains (for instance, the mouse-pathogenic Kümm, Kwanyanga, and Nonile stocks) will have to be determined, as will the sequences of other possibly closely related erhrlichial species, such as *Ehrlichia bovis*, *Ehrlichia ondri*, and *Ehrlichia ovis*. The fact that the erythrocytic rickettsia *Anaplasma marginale* (30) clusters with the granulocytic genus *Ehrlichia* (Fig. 2) and the previously reported phylogenetic diversity of the rickettsiae (31) indicate the need for a reorganization of the order *Rickettsiales*. Before this can be done, the 16S rRNA sequences of more rickettsial species that are currently placed in three families of the *Rickettsiales* (*Rickettsiaceae*, *Bartonellaceae*, and *Anaplasmataceae*) will also have to be taken into account.

Cross-reactivity between members of the genus *Cowdria* and members of the genus *Ehrlichia* should be further investigated and should be taken into account in studies on the serological diagnosis of cowdriosis and ehrlichial diseases.

Nucleotide sequence accession number. The nucleotide sequence of the amplified 16S rDNA of *Cowdria ruminantium* has been assigned accession number X62432.

This work was supported by a grant from the Office International des Epizooties, Paris, France. The use of services and facilities of the Dutch National NWO/SURF Expertise Center CAOSKAMM and of the European Community Network CAOSKAMM is gratefully acknowledged.

We thank B. E. Anderson for making the *Ehrlichia* 16S rRNA sequences available.

ADDITIONAL IN PROOF

The 16S ribosomal DNA sequence of the Crystal Springs isolate of *Cowdria ruminantium* has been reported recently by Dame et al. (J. B. Dame, S. M. Mahan, and C. A. Yowell, Int. J. Syst. Bacteriol. 42:270-274, 1992). The two sequences differ by only 4 nucleotides.

REFERENCES