Staphylococcus muscae, a New Species Isolated from Flies

V. Hájek,1* W. Ludwig,2 K. H. Schleifer,2 N. Springer,2 W. Zitzelsberger,2 R. M. Kroppenstedt,3 and M. Kocur4

Department of Microbiology, Faculty of Medicine, Palacky University, 775 15 Olomouc, Czechoslovakia; Lehrstuhl für Mikrobiologie, Technische Universität München, D-8000 Munich, Germany; Deutsche Sammlung von Mikroorganismen und Zellkulturen, D-3300 Braunschweig, Germany; and Czechoslovak Collection of Microorganisms, Masaryk University, Brno, Czechoslovakia

A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).

A total of 28 species are currently recognized in the genus Staphylococcus; 19 species are listed in Bergey’s Manual of Systematic Bacteriology (14), two species (Staphylococcus chromogenes and Staphylococcus lentus) have been elevated from the subspecies level (8, 19), and 7 species have been described since 1984 (Staphylococcus arlettae, Staphylococcus delphini, Staphylococcus equorum, Staphylococcus felis, Staphylococcus kloosii, Staphylococcus lugdunensis, and Staphylococcus schleiferi) (5, 11, 21, 26). Most of the new species were isolated from animals; the exceptions were S. lugdunensis and S. schleiferi, which were isolated from humans. The descriptions of all 28 Staphylococcus species were based on studies of strains that were isolated from mammals, birds, and foodstuffs of animal origin.

In this paper, we describe a new coagulase-negative species of staphylococci that was obtained from the body surfaces of flies. These organisms were found in about 7% of the flies caught in certain cow sheds but not on flies caught in human dwellings, stables, or piggeries (7). For this reason, this bacterium should be regarded as a transient rather than a resident on flies.

In this report we present phenetic and molecular taxonomic data for a new species, Staphylococcus muscae.

MATERIALS AND METHODS

Bacterial strains. Four strains were isolated from flies trapped in cow sheds; strains MB4T (T = type strain), MB21, and MB50 were isolated from Stomoxys calcitrans, and strain MB30 was isolated from Musca domestica (7). The medium used for isolation was blood agar base no. 2 (Oxoid) supplemented with 5% defibrinated ovine blood. Nutrient agar (Oxoid) containing glucose (2%, wt/vol) and P agar (15) were used to propagate all of the isolates. Inocula for tests were prepared from 1-day cultures that were incubated at 37°C. All strains were stored as frozen suspensions in glycerol broth at −25°C (10) and also in a freeze-dried state.

Methods. The procedures used for determining morphological, physiological, and biochemical characteristics have been described elsewhere (6). The type strains of the 14 novobiocin-susceptible Staphylococcus species (see Table 2) were obtained from the Deutsche Sammlung von Mikroorganismen (DSM), Braunschweig, Germany, the American Type Culture Collection (ATCC), Rockville, Md., and the Czechoslovak Collection of Microorganisms (CCM), Brno, Czechoslovakia.

Phage typing was carried out by using the method of Blair and Williams (1). We used 24 phages (25) for human Staphylococcus aureus strains, 12 phages (24) for bovine S. aureus strains, 4 experimental phages (2) for Staphylococcus intermedius strains, and 4 phages (9) for Staphylococcus hyicus strains.

We used the methods described by Schleifer and Kandler (20) and Schleifer (18) for cell wall preparation and determination. Cellular fatty acids were determined by gas chromatography, using the method of Miller (17). DNA base composition was determined by thermal denaturation with a model 2600 spectrophotometer (Gilmont Instruments Laboratories, Inc., Oberlin, Ohio) (3). DNA from Escherichia coli K-12 was used as a standard (13). Radioactive labeling of DNA and the DNA-DNA hybridization experiments were carried out by using the filter method as described previously (12). 16S rRNA genes (16S rDNA) were amplified in vitro by using the polymerase chain reaction as described previously by Ludwig et al. (16). The amplified 16S rDNA fragment was cloned in vector pBluescript (Stratagene, La Jolla, Calif.) and E. coli JM83. The cloned DNA was sequenced by using the chain termination method in combination with site-specific primers (16). Sequences of 16S rRNA genes were aligned, similarities between sequence pairs were determined, and an unrooted phylogenetic tree was constructed by using the method of Fitch and Margoliash (4) as described by Schleifer et al. (23).

RESULTS AND DISCUSSION

The four strains which we investigated were gram-positive, catalase-positive cocci that occurred in irregular clumps, were facultatively anaerobic, were susceptible to furadantin, and were resistant to bacitracin. The DNA base compositions of the four strains ranged from 40 to 41 mol% guanine plus cytosine (strains MB4T and MB21, 40 mol%; strains MB30 and MB50, 41 mol%); these values are somewhat higher than the values obtained for the previously described staphylococci (30 to 39 mol%). The fatty acid compositions of three S. muscae strains are summarized in

* Corresponding author.
FIG. 1. Nucleotide sequences of 16S rRNAs of *S. muscae* (Smus), *S. sciuri* (Ssci), and *S. schleiferi* (Ssch). Bases which were not determined are indicated by n.
auricularis relatedness between each of the hyicus below the melting temperature of the DNA). We also determined the levels of 4807T. The values which we obtained were all less than 15%.

lentus cohnii Staphylococcus S. muscae S. muscae with strains MB4T, MB21, MB30, and MB50. Pairs and singly. Spherical or slightly ovoid cells are nonmotile, arranged predominantly in irregular clumps, occasionally in convex with gently raised centers, circular, entire, smooth, tion of the new species (3a).

Description of Staphylococcus muscae sp. nov. The description of the new species Staphylococcus muscae (mus'cae. L. gen. n. musca, of a fly) was based on the test results obtained with strains MB4T, MB21, MB30, and MB50.

All of the strains which we studied are small gram-positive cocci that range from 0.4 to 1.1 μm in diameter and are arranged predominantly in irregular clumps, occasionally in pairs and singly. Spherical or slightly ovoid cells are nonmotile and nonsporulating.

Colonies on P agar (after 5 days at 37°C) are only slightly convex with gently raised centers, circular, entire, smooth, faintly glistening, butyrous, opaque, grayish white, and 5 to 6 mm in diameter.

These organisms grow well in the presence of NaCl at concentrations up to 10%; no growth occurs at an NaCl concentration of 15%. They grow moderately at 25°C; no growth occurs at 30 and 45°C.

Facultative anaerobes; better growth occurs under aerobic conditions. Anaerobic growth in semisolid thioglycolate medium is evident after 24 to 48 h.

All of the strains produce catalase, phosphatase (strain MB50 weakly), and heat-labile nuclease and are positive in benzidine tests and weakly positive in methyl red tests. These organisms exhibit clear hemolysis on ovine blood agar medium (strains MB21 and MB30 weakly). All of the strains produce lecithinase, split Tween 20, Tween 40, and Tween 80, and reduce nitrates. On crystal violet agar, three of them produce white (positive, E type) colonies, while strain MB30 produces blue (negative, D type) colonies.

None of the strains produces oxidase, coagulase, clumping factor, fibrinolytin, thermostable nuclease, tellurite reductase, gelatinase, protease, urease, arginine dihydrolase, alpha- or beta-hemolysins, ornithine decarboxylase, acetyl-methylcarbinol, or beta-galactosidase. The strains do not hydrolyze starch or esculin.

The strains produce acid aerobically from glucose (without gas), fructose, sucrose, trehalose, turanose, xylose, and glycerol. No acid is produced from adonitol, arabinose, arbutin, cellobiose, dulcitol, fucose, galactose, inositol, inulin, lactose, maltose, mannitol, mannose, melezitose, melibiose, raffinose, rhhamnose, ribose, salicin, sorbose, or tagatose. All of the strains except strain MB30 have the ability to produce acid anaerobically from glucose weakly.

All of the strains are resistant to lysozyme (MIC, >1,000 μg/ml) and susceptible to novobiocin (MIC, 0.06 to 0.1 μg/ml), penicillin (MIC, 0.01 to 0.06 μg/ml), ampicillin (MIC, 0.2 μg/ml), ampicillin (MIC, 0.06 to 1.0 μg/ml), cephalexin.

Table 1. Levels of DNA-DNA relatedness between S. muscae strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>S. muscae MB4T</th>
<th>S. muscae MB21</th>
<th>S. muscae MB30</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of homology with labeled DNA from strain:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB4T</td>
<td>100</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>MB21</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>MB30</td>
<td>95</td>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

* The values were determined under optimal hybridization conditions (25°C below the melting temperature of the DNA). We also determined the levels of relatedness between each of the S. muscae strains and the following other Staphylococcus strains: S. arlettor DSM 20672T, S. aureus ATCC 12600T, S. auricularius DSM 20609T, S. capreus DSM 3573T, S. carnosus DSM 20501T, S. cohnii DSM 20266T, S. equorum DSM 20674T, S. gallinarum DSM 20610T, S. hyicus ATCC 12349T, S. intermedius CCM 5739T, S. kloosii DSM 20676T, S. lentus ATCC 29070T, S. lugdunensis DSM 4804T, and S. schleiferi DSM 4807T. The values which we obtained were all less than 15%.

* Percent relatedness. ND, not determined.

FIG. 2. Phylogenetic relationships of S. muscae. The tree was constructed by using distance values (K_m) (23). Bar = 0.05 K_m.

Pigment
Oxidase
Alkaline phosphatase
Urease
Hemolysin
Ornithine
Clumping factor
Heat-stable nuclease
Acetoin

Acid produced from:
- Lactose
- Maltose
- Mannitol
- Mannose
- Ribose
- Saccharose
- Trehalose
- Turanose
- Xylose

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>S. muscae</th>
<th>S. auricularis</th>
<th>S. capitis</th>
<th>S. epidermidis</th>
<th>S. hominis</th>
<th>S. lugdunensis</th>
<th>S. schleiferi</th>
<th>S. simulans</th>
<th>S. warneri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemolysin</td>
<td>w</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ornithine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clumping factor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heat-stable nuclease</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetoin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>v</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acid produced from:</th>
<th>Lactose</th>
<th>Maltose</th>
<th>Mannitol</th>
<th>Mannose</th>
<th>Ribose</th>
<th>Saccharose</th>
<th>Trehalose</th>
<th>Turanose</th>
<th>Xylose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*+, positive; w, weak; v, variable; -, negative; ND, not determined.

(MIC, 0.1 to 0.2 μg/ml), erythromycin (MIC, 0.06 μg/ml), lincomycin (MIC, 0.2 to 0.5 μg/ml), clindamycin (MIC, 0.1 μg/ml), chloramphenicol (MIC, 2.0 μg/ml), tetracycline (MIC, 0.1 to 0.2 μg/ml), gentamicin (MIC, 0.2 μg/ml), and vancomycin (MIC, 1.0 μg/ml). All four strains are resistant to bacitracin (10 U per disc) and susceptible to furadantin (100 pg per disc) when the disc diffusion method is used.

The characteristics of this strain are the same as those given above for the species and in Table 1.

The peptidoglycan type of strains MB4 and MB21 is Lys-Gly, Ser. None of the strains have protein A.

The average guanine-plus-cytosine content of the DNA is 40 to 41 mol%.

Strain MB4 (= CCM 4175) is the type strain of S. muscae. The characteristics of this strain are the same as those given above for the species and in Table 1.

The phenotypic properties that are useful for differentiating S. muscae from the other coagulase-negative staphylococcal species are shown in Table 3. S. muscae can be distinguished from the other species on the basis of its susceptibility to novobiocin, positive test for alkaline phosphatase, negative tests for oxidase, acetoin, pigment, and urease, carbohydrate reaction pattern, peptidoglycan type, and comparatively high DNA base composition.

REFERENCES

15a. Lane, D., and E. Stackebrandt. Personal communication.

