Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids and Produces Butyrate

L. R. KRUMHOLZ and M. P. BRYANT

Departments of Dairy Science and Microbiology, University of Illinois, Urbana, Illinois 61801

The new bacterial species *Clostridium pfennigii* obtained energy for growth by catabolizing pyruvate to acetate and CO₂; CO to acetate and butyrate; vanillin to butyrate, protocatechualdehyde, and protocatechu-ate; ferulate to butyrate, caffeate, and hydrocaffeate; and syringate and 3,4,5-trimethoxybenzoylacetate to butyrate and gallate. This new species did not use any other energy source, such as sugars, amino acids, other organic acids (including formate), methanol, ethanol, or H₂-CO₂. *C. pfennigii* is a small, motile, anaerobic, gram-positive, monotrichous rod-shaped organism with a lateral to subterminal flagellum, oval subterminal to terminal spores, and a deoxyribonucleic acid guanine-plus-cytosine content of 38 mol%. It did not liquefy gelatin. Based on the features described above, *C. pfennigii* may be closely related to *Acetobacterium woodii*.

However, strain V5-2ᵀ (T = type strain) used pyruvate but did not use sugars or one-carbon compounds other than CO₂; it produced acetate and butyrate. The stoichiometry of substrate utilization and the growth yields from different energy sources are discussed.

Methoxylated benzenoids are commonly found in the diets of ruminants and nonruminants as derivatives of cinnamic and benzoic acids ester linked to carbohydrates. Bacteria within mammalian gastrointestinal tracts modify benzenoid monomers by dehydroxylation (3), saturation of the propenoate side chains of cinnamate derivatives (4), decarboxylation of benzoic acid derivatives (9), and demethoxymethylation of methyl ether derivatives (8).

Acetobacterium woodii (2) was isolated from anaerobic digestor sludge and freshwater sediments after enrichment with vanillate (3-methoxy-4-hydroxybenzoate) and produced protocatechuate and acetate (1). This interesting fermentation by *A. woodii* also occurred with a number of other methoxylated compounds, including ferulate, syringate, sinapate, and anisole. *Eubacterium limosum*, which was isolated from sheep fed a liquid molasses-based diet, carries out a similar process (B. R. S. Genther, Ph.D. thesis, University of Illinois, Urbana, 1984), but it is not found in rumina when mature animals are on more normal diets.

In recent studies our goal was to isolate and characterize the rumen bacteria which have the ability to cleave methyl ether linkages of benzenoids and which use the methoxyl groups as energy sources. “Syntrophoccus sacromutans” was the most numerous rumen species carrying out this process. It used carbohydrates as electron donors and electron acceptors, such as methoxyl groups of monobenzenoids, to produce acetate (Krumholz and Bryant, Arch. Microbiol., in press). *Clostridium pfennigii*, which is described in this paper, ferments methoxyl groups of monobenzenoids and produces the corresponding hydroxybenzenoids and butyrate.

MATERIALS AND METHODS

Anaerobic methods and media. The anaerobic methods and media used were similar to those described elsewhere (Krumholz and Bryant, in press). *C. pfennigii* strain V5-2ᵀ (T = type strain) was isolated after enrichment from 10 μl of rumen fluid from a steer fed alfalfa hay (70%) and grain (30%). The enrichment medium contained 5 mM vanillate, 5% (vol/vol) rumen fluid, mixtures of B vitamins and minerals, 1 mM Na₂S, 40 mM NaHCO₃, and an 1 N₂-CO₂ (4:1) gas phase; the pH of this medium was 7.2. The reducing solution was changed, after a few transfers of the culture, to 1 mM Na₂S; 2 mM cysteine. Strain V5-2ᵀ was isolated from roll tubes containing the enrichment medium supplemented with 2% Bacto-agar (Difco Laboratories, Detroit, Mich.); manipulations were carried out as described by Genther et al. (5). After isolation, strain V5-2ᵀ was grown in basal medium supplemented with an energy source, as well as 30% rumen fluid and 0.2% yeast extract. Preparations were incubated at 39°C.

The analytical methods used have been described elsewhere (Krumholz and Bryant, in press).

RESULTS AND DISCUSSION

Demethoxylation of monobenzenoid acids has been shown to occur in sheep when vanillate is infused into the rumen, and the products are recovered in the urine. The resultant hydroxybenzenoids are predominantly catechol (2-hydroxyphenol) and a small amount of guaiacol (2-methoxyphenol) (8). Identical products along with protocatechuates were observed when vanillate was incubated anaerobically with rat cecal contents (9). In similar studies (10), vanillate was catabolized via the following two

* Corresponding author.
pathways: oxidation to vanillate and via a reductive route to 4-methylcatechol and 4-methylguaiacol.

unlike groups of benzenoid compounds by an anaerobic bacterium

though 16S ribosomal ribonucleic acid data often indicate used the former pathway.

Pfennig, who first documented the catabolism of methoxyl to which it may be phylogenetically related. However, Strain V5-2T in the genus Clostridium named after Norbert Pfennigii sp. nov. Clostridium pfennigii (pfen.nig'i.i L. gen. n. pfennigii named after Norbert Pfennig, who first documented the catabolism of methoxyl groups of benzenoid compounds by an anaerobic bacterium) surface colonies are 2 to 3 mm in diameter, smooth, convex, entire, and opaque after 1 week of incubation in roll tube medium supplemented with 5 mM vanillate. In liquid medium cultures are evenly turbid.

Strain V5-2T cells are gram positive, motile, slightly curved, rod shaped, and about 0.4 mm wide by 1.6 to 3.5 mm long and have rounded to slightly tapered ends. The cells usually occur singly and in division stages (Fig. 1). Electron microscopy reveals a single laterally to subterminally attached flagellum. Spores are resistant to boiling for 3 min; they are oval, subterminal to terminal, and 0.4 mm wide by 0.4 to 0.8 mm long and slightly swell the sporangium.

Strain V5-2T grows only with methoxybenzenoids, pyruvate, or CO added to the medium (Table 1). Butyrate and hydroxybenzenoids are the only organic products of methoxynbenzenoids. CO is catabolized to acetate and butyrate. Pyruvate is fermented to acetate. The methoxybenzenoids are catabolized to hydroxybenzenoids as follows: vanillate (3-methoxy-4-hydroxybenzate) to protocatechuate (3,4-dihydroxybenzate); vanillin (3-methoxy-4-hydroxybenzaldehyde) to protocatechuic aldehyde and protocatechuate; ferulate [3-(3methoxy-4hydroxyphenyl)-2-propenoate] to caffeate [3-(3,4-dihydroxyphenyl)-2-propenoate] and hydrocaffeate [3(3,4-dihydroxyphenyl)-propionate]; and syringate (3,5-dimethoxy-4-hydroxybenzate) to 3,4,5-trimethoxybenzoate to gallose (3,4,5-trihydroxybenzate). No other substrates are utilized (Table 1). CO2 is produced from CO and pyruvate, but is not significantly produced during growth on benzenoids. No H2, other organic acids, ethanol, or methanol production have been observed.

The equations that best fit the results shown in Table 1 are as follows:

\[
\text{Vanillate}^{-} + 0.2 \text{HCO}_{3}^{-} \rightleftharpoons \text{Protocatechuate}^{-} + 0.3 \text{Butyrate}^{-} + 0.1 \text{H}^{+}
\]

\[
\text{Vanillin} + 0.3 \text{HCO}_{3}^{-} \rightleftharpoons 0.75 \text{Protocatechuic aldehyde} + 0.25 \text{Protocatechuate}^{-} + 0.325 \text{Butyrate}^{-} + 0.275 \text{H}^{+}
\]

\[
\text{Ferulate}^{-} + 0.5 \text{H}_{2} \text{O} \rightleftharpoons 0.5 \text{Caffeate}^{-} + 0.5 \text{Hydrocaffeate}^{-} + 0.25 \text{Butyrate}^{-} + 0.25 \text{H}^{+}
\]

\[
\text{Syringate}^{-} + 0.4 \text{HCO}_{3}^{-} \rightleftharpoons \text{Gallose}^{-} + 0.6 \text{Butyrate}^{-} + 0.2 \text{H}^{+}
\]

\[
\text{Trimethoxybenzoate}^{-} + 0.6 \text{HCO}_{3}^{-} \rightleftharpoons \text{Gallose}^{-} + 0.9 \text{Butyrate}^{-} + 0.3 \text{H}^{+}
\]

Maximum optical density is linear with vanillate concentrations up to at least 10 mM. Cell protein yield is 8.17 ± 0.53 g/mol of ferulate (mean ± standard error of three cultures containing 3 mM ferulate and three cultures containing 6 mM ferulate). The growth yields of a number of acetogens,
including \textit{C. pfennigii}, are compared in Table 2. There was a significant improvement in cell yields when the organisms were grown on ferulate, probably due to the reduction of the acrylate side chains (11).

Little is known about nutritional requirements, but growth is best with 30% rumen fluid (0, 5, 10, 20, and 30% tested), 0.2% yeast extract, and a specific energy source(s) in medium containing bicarbonate, minerals, cysteine, sulfide, and a mixture of water-soluble vitamins. Very little growth occurs without rumen fluid (optical density, 0.03). The addition of Casitone, Casamino Acids, 1,4-naphthoquinone, hemin, or a mixture of volatile fatty acids to media with or without rumen fluid does not stimulate growth. No growth occurs without an added energy source. Neither sulfate, thiosulfate, nitrate, nor fumarate stimulates growth on syringate, and nitrate is not reduced during growth in this medium. The addition of sulfate does not allow growth on lactate or ethanol. Gelatin is not liquefied.

The pH range for growth is 6.3 to at least 8.0; the optimum pH is 7.3.

The temperature range for growth is 23 to 39°C; the optimum temperature is 36 to 38°C.

The deoxyribonucleic acid base ratio is 38 mol% guanine plus cytosine (thermal denaturation method). Habitat: isolated from rumina of cattle.

The type strain is strain VS-2 (= DSM 3222).

ACKNOWLEDGMENTS

We thank the Center for Electron Microscopy of the University of Illinois, Urbana-Champaign, for the use of their facilities and I.C. Gunsalus for the use of the model DU-8 spectrophotometer used for thermal denaturation measurements.

This research was supported by contract DE-AC02-81ER10874 from the U.S. Department of Energy and by the Agricultural Experiment Station, University of Illinois. L.R.K. received support from the Natural Sciences and Engineering Research Council of Canada.

LITERATURE CITED

