NOTES

Listeria ivanovii sp. nov.

HEINZ P. R. SEELIGER,® JOCELYNE ROCOURT,® ANGELIKA SCHRETTENBRUNNER, PATRICK A. D. GRIMONT, and DOROTHY JONES

Institut für Hygiene und Mikrobiologie, D-8700 Würzburg, German Federal Republic;* Unité d’Ecologie Bactérienne, and Unité des Entérobactéries, Unité INSERM 199; Institut Pasteur, F-75724 Paris Cedex 15, France; and Department of Microbiology, School of Medicine and School of Biological Sciences, University of Leicester, Leicester LE1 7RH, England

Biochemical, genomic, and serological data indicate that strains currently referred to as Listeria monocytogenes serovar 5 are sufficiently distinct from other species of the genus Listeria to merit separate species status. It is proposed that these strains be designated Listeria ivanovii sp. nov. The type strain of L. ivanovii is strain SLCC 2379 (= ATCC 19119).

The unsatisfactory taxonomic status of strains designated Listeria monocytogenes serovar 5 (5) has been noted for some time (4). Ivanov (4) considered that strains so designated were sufficiently distinct from other strains of L. monocytogenes to be recognized as a separate species, for which he suggested the name “Listeria bulgarica.” However, no type strain was designated, and this name lost standing in bacteriological nomenclature when it was omitted from the Approved Lists of Bacterial Names (15). Later, Seeliger et al. (13) recommended that L. monocytogenes serovar 5 strains be recognized either as a subspecies, “Listeria monocytogenes subsp. perhaemolytica,” or as a distinct species, which could be named either “Listeria perhaemolytica” or “Listeria ivanovii.” Although this recommendation reflected the opinion of these authors that serovar 5 strains represented a taxon distinct from L. monocytogenes, it did not constitute a proposal for recognition of a new species. Therefore, the taxonomic status of L. monocytogenes serovar 5 remained unresolved.

Recent deoxyribonucleic acid relatedness studies (8) with 66 strains of L. monocytogenes have shown that this species, as defined in Bergey’s Manual of Determinative Bacteriology, 8th ed. (14), contains five genomic groups. The deoxyribonucleic acid relatedness values (as determined by the S1 nuclease-trichloroacetic acid method) of 18 to 58% among the five groups with differences between the thermal denaturation midpoints of the homoduplexes and the thermal denaturation midpoints of the heteroduplexes of more than 7.1°C provided strong evidence that each of the genomic groups represents a distinct species (1, 9). Genomic group 1 contained the type strain (strain ATCC 15313) of L. monocytogenes and thus corresponded to L. monocytogenes sensu stricto (8). Genomic groups 3, 4, and 5 corresponded to the recently named species Listeria innocua (11), Listeria welshimeri, and Listeria seeligeri (9), respectively.

Genomic group 2 contained all nine strains of L. monocytogenes serovar 5 examined, including strain SLCC 2379 (T = type strain; Special Listeria Culture Collection of the Institute of Hygiene and Microbiology of the University of Würzburg, Würzburg, Federal Republic of Germany; = ATCC 19119). The levels of deoxyribonucleic acid relatedness (S1 nuclease-trichloroacetic acid method) of the other eight strains in genomic group 2 to strain SLCC 2379 were 99 ± 5% (differences between the thermal denaturation midpoints of the homoduplexes and the thermal denaturation midpoints of the heteroduplexes less than 1.2°C). Strain SLCC 2379 and another strain of genomic group 2, strain SLCC 3769, were 39 and 22% related, respectively, to strain SLCC 53 (= ATCC 15313), the type strain of the type species, L. monocytogenes. Therefore, as noted by Rocourt et al. (8, 9), the strains of L. monocytogenes serovar 5 constitute a distinct genomic species.

The results of recent biochemical and serological studies (10, 13) on strains of L. monocytogenes serovar 5 and strains of L. innocua, L. monocytogenes sensu stricto, L. seeligeri, and L. welshimeri, together with the data from earlier studies on strains of L. monocytogenes serovar 5 (3–5), support separate species status for these strains. In addition to their distinctive antigenic composition and their pronounced hemolytic activity on blood agar, L. monocytogenes serovar 5 strains exhibit a positive CAMP test with Rhodococcus equi.

L. monocytogenes serovar 5 strains are experimentally pathogenic for mice (7, 13), but the 50% lethal dose of these strains is 10 times higher than that of L. monocytogenes sensu stricto. L. innocua, L. seeligeri, and L. welshimeri are nonpathogenic for mice (7). L. monocytogenes serovar 5 strains have been reported as the causative agent of abortion, mainly in sheep (2–4, 6). Infection of humans is very rare (13). Therefore, it is possible that the basis of the pathogenicity of L. monocytogenes serovar 5 strains is different from that of L. monocytogenes sensu stricto, which is mainly responsible for meningocencephalitis, sepsis, and neonatal sepsis in humans and animals.

The purpose of this paper is to propose the name Listeria ivanovii sp. nov. for genomic species 2 of Rocourt et al. (8), which contains the bacteria currently referred to as L. monocytogenes serovar 5. The physiological, biochemical, pathogenic, and genetic characteristics of the designated type strain, strain SLCC 2379, and other representative strains have been published previously by us and other workers (3–5, 7, 9, 10, 12, 13).

Description of Listeria ivanovii sp. nov. Listeria ivanovii sp. nov. (i.van.oy'v.i.i. M.L. gen. noun ivanovii of Ivanov, honoring Ivan Ivanov, a Bulgarian microbiologist) cells are small, nonsporing, gram-positive rods which are motile at 28°C. Colonies on tryptose agar (Difco Laboratories) are very small (0.5 to 1 mm in diameter after 1 or 2 days of incubation at 37°C), regular, and smooth and appear blueish green when
they are viewed by obliquely transmitted light. Colonies on sheep or horse blood (5%, vol/vol) agar are strongly β-
hemolytic.

A positive CAMP test is exhibited with R. equi (strain CIP 5869) but not with Staphylococcus aureus. Growth occurs at
4°C within 5 days. Facultatively anaerobic. Catalase is
produced. The oxidase test is negative. Acid but no gas is
produced from glucose and D-xylose. No acid is produced
from D-mannitol, L-rhamnose, or α-methyl-D-mannoside.
Voges-Proskauer and methyl red tests are positive. Esculin
is hydrolyzed in 1 day. Urea is not hydrolyzed. Gelatin
are not reduced to nitrite. Strains possess a distinctive
hydrolyzed. Neither indole nor H2S is produced. Nitrates
are not reduced to nitrite. Strains possess a distinctive
antigenic composition referred to as serological group 5 (12).
The type strain is SLCC 2379 (= ATCC 19119). This strain
was isolated by I. Ivanov from sheep.

Description of the type strain. The description of the type
strain is the same as that of the species. This strain is one of
the set of reference strains used for serological analysis of
Listeria strains (12).

LITERATURE CITED

Springer-Verlag, Berlin.


56.


367.


8. Rocourt, J., F. Grimont, P. A. D. Grimont, and H. P. R.
Seeliger. 1983. DNA relatedness among serovars of Listeria


71.


13. Seeliger, H. P. R., A. Schrettenbrunner, G. Pongratz, and H.
Hof. 1982. Zur Sonderstellung stark hämolysierender Stämme

593–596. In R. E. Buchanan and N. E. Gibbons (ed.). Bergey’s
manual of determinative bacteriology, 8th ed. The Williams and
Wilkins Co., Baltimore.

15. Skerman, V. B. D., V. McGowan, and P. H. A. Sneath (ed.).