Guanine-plus-Cytosine Content and Production of Phenylacetic Acid by *Bacteroides putredinis* (Weinberg et al., 1937) Kelly (1957) and *Bacteroides splanchnicus* Werner et al. (1975)

R. HAMMANN* and H. WERNER

Institute for Medical Microbiology and Immunology, University of Bonn, D-5300 Bonn I, Federal Republic of Germany

The guanine-plus-cytosine contents of *Bacteroides putredinis* and *Bacteroides splanchnicus* deoxyribonucleic acids were determined after the deoxyribonucleic acids were purified by gel chromatography. In addition, both species were tested for the production of phenylacetic acid. The guanine-plus-cytosine content of *B. putredinis* deoxyribonucleic acid was 50 to 52 mol%, and that of *B. splanchnicus* deoxyribonucleic acid was 38 to 40 mol%. Both species produced phenylacetic acid.

MATERIALS AND METHODS

The type strain (ATCC 29800) and strains S27-35 and 47-79 (both clinical isolates) of *B. putredinis* and the type strain (NCTC 10825), strain K1-2 (from feces), and strain S2-34 (a clinical isolate) of *B. splanchnicus* were included in this study.

Strains were cultured and identified by the methods of Werner and Rintelen (14) and Holdeman et al. (4). The acid end products from PYG and PY fermentation broths were determined by gas chromatography. Volatile acids were extracted in diethyl ether after acidification, and nonvolatile acids were detected after methylation (4). The gas chromatographic methods which we have used have been described elsewhere (3).

DNA was extracted and purified as follows. A 2- or 3-g (wet weight) sample of cells from a 48-h culture in PYG was washed in saline ethylenediaminetetraacetate (8), lysed, and purified to the first deproteinization step of the procedure of Marmur (8) with chloroform-isoamyl alcohol. The DNA was separated by a brief centrifugation (5 min, 5,000 × g), and then precipitated with 2 volumes of ethanol and removed by gently spooling on a glass rod. The precipitated DNA was dissolved in 0.1 M NaCl plus 0.015 M sodium citrate. Further purification was accomplished by adding 50 µg of ribonuclease (Signta, Munich, Federal Republic of Germany) per ml, followed by incubation for 30 min at 37°C. Pronase (10 µg/ml; Serva, Heidelberg, Federal Republic of Germany) was added, and the mixture was incubated for 2 h at 37°C. A 2-ml portion of the resulting DNA solution was applied directly to a column (0.9 by 60 cm) of Sepharose 4B (Pharmacia, Uppsala, Sweden). The components were eluted with 0.1 M NaCl (1 × SSC) at a flow rate of about 0.15 ml/min; 50-drop fractions were collected, and the first two fractions of the first elution peak (measured at 260 nm) were collected and used for further G+C determinations. The principle of this purification method has been discussed by Gibson and Ogden (2) and Zadražil et al. (16).

G+C contents were estimated by the thermal melting point method (7) in 0.1 × SSC. Measurements were performed with a Zeiss model DMR 11 double-beam spectrophotometer equipped with a thermostatable cuvette holder at 260 nm. Cuvettes were heated with a Thermomix model 1460 constant-temperature circulator (Braun, Melsungen, Federal Republic of Germany). Temperatures were checked with an equilibrated thermometer. Measurements were done twice with different preparations, and several *Bacteroides* strains whose G+C contents were known were included for reference purposes. The G+C content was calculated from the following formula: G+C = (Tm − 53.9) × 2.44, where Tm was the thermal melting point.

RESULTS

The morphological and physiological properties of all six strains studied were in accordance...
with the results described for the type strains (1, 13, 15). In addition to acetic, propionic, isobutyric, butyric, isovaleric, and succinic acids, all strains of \textit{B. splanchnicus} and \textit{B. putredinis} produced considerable amounts of phenylacetic acid (Fig. 1).

The G+C contents of \textit{B. splanchnicus} strains NCTC 10825T, K1-2, and S2-34 were 38.3, 39.8, and 39.0 mol\%, respectively. The G+C contents of \textit{B. putredinis} strains ATCC 29800T, S27-35, and 47-79 were 50.5, 51.5 and 51.0 mol\%, respectively.

DISCUSSION

The DNA purification procedure described above seems to be a useful tool for quick and reliable DNA purification, especially for bacteria with a low DNA yield. With this method we were able to obtain reproducible results in determinations of the DNA base contents of many strains of bacteria, including \textit{B. putredinis} and \textit{B. splanchnicus}.

Strains of \textit{B. asaccharolyticus} and \textit{B. putredinis} can be differentiated by phenylacetic acid production. Although these two species have similar G+C contents, only \textit{B. putredinis} produces phenylacetic acid.

This work was supported by grant Bo 212-31 from the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg.

We thank B. Amendt for skilled technical assistance.

LITERATURE CITED