Comparative Study of Molecular Size and Structure of Exo-β-Glucanases from *Kluyveromyces* and Other Yeast Genera: Evolutionary and Taxonomic Implications

MARC-ANDRÉ LACHANCE† AND HERMAN J. PHAFF

Department of Food Science and Technology, University of California, Davis, California 95616

A comparative study was made of the molecular weights of the exo-β-glucanases (EC 3.2.1.58) of species belonging to *Kluyveromyces* or to various other yeast genera. Their immunological distances were determined with the exo-β-glucanases from *Kluyveromyces fragilis*, *K. phaseolosporus*, *K. aestuarii*, and *Saccharomyces cerevisiae* as references. The molecular sizes of the enzymes were estimated by polyacrylamide gel exclusion chromatography, and the immunological comparison was done by the microcomplement fixation technique. The molecular weights of the enzymes from ascomycetous species ranged from 24×10^3 to 63×10^3, but the majority of the species, including most species of *Kluyveromyces*, contained exo-β-glucanases with molecular weights between 35×10^3 and 45×10^3. Immunological identity was observed among the exo-β-glucanases from the following species: *K. fragilis* (reference species), *K. marxianus*, *K. bulgaricus*, *K. cicerisporus*, and *K. wikenii*; closely related were *K. phaseolosporus* (reference species), *K. delphensis*, *K. lactis*, *K. vanudenii*, and *K. drosophilaram*; also closely related were *Saccharomyces cerevisiae* (reference species), *S. italicus*, *S. uvarum*, and *S. chevalieri*. The exo-β-glucanase from *K. aestuarii* showed low degrees of homology with those from all tested species of *Kluyveromyces*. It was concluded from these data that ascospore shape has little significance in the phylogeny of this genus. Other evolutionary implications are discussed.

The genus *Kluyveromyces* was established by van der Walt (17) when he isolated from soil an ascosporogenous yeast, *K. polysporus*, capable of producing up to 60 spores per ascus. Shortly afterward, he described a second species (*K. africanus*) and later emended the generic diagnosis (18), which permitted the transfer to *Kluyveromyces* of several *Saccharomyces* species that formed up to four kidney-shaped or spheroidal spores per ascus. The genus *Kluyveromyces* is presently based on: the ability of its species to release reniform or spheroidal ascospores, soon after their formation, by dehiscence from the ascus; the smooth surface of the ascospores; and vigorous fermentation of glucose (19). In discussing the phylogeny of *Kluyveromyces*, van der Walt proposed (19) that the genus evolved along two main lines of development. His views were patterned after Wickerham’s (24) concept of evolution in the genus *Hansenula*. The two postulated lineages were distinguished on the basis of ascospore morphology (reniform versus spheroidal), each group containing species that were thought to have evolved toward more advanced states, characterized by the acquisition of the abilities to synthesize α-glucosidase or β-galactosidase or to produce ascospores in numbers greater than four per ascus.

Important contributions were made recently to the study of phylogeny in *Kluyveromyces*; these were based on the nuclear deoxyribonucleic acid (DNA) base composition of its species (10), their DNA/DNA base sequence comparison (2, 8, 9), and a factor analysis of their functional phenotypes (14). The results obtained by these different approaches agree in part with each other and with van der Walt’s postulated lineages, but several contradictions are also evident.

This paper reports a comparative study of the exo-β-glucanases (EC 3.2.1.58) extracted from the various species of *Kluyveromyces* and from representatives of other yeast genera. Various properties have been reported of exo-β-glucanases extracted and purified from *K. fragilis*, *Hansenula anomala*, *Saccharomyces cerevisiae* (1), *K. aestuarii* (6), and *K. phaseolosporus* (21). Some properties of the enzymes (e.g., substrate specificity and response to pH) appear...
rather similar, whereas others (e.g., kinetic constants) vary significantly.

The results presented here are based on: (i) a comparison of the molecular weights of these enzymes, and (ii) a study of their immunological relatedness by the microcomplement fixation technique (3). For the latter, K. aestivalii, K. fragilis, K. phaseolosporus, and Saccharomyces cerevisiae were used as reference species. It is shown how the results obtained relate to the evolution and classification of the species of Kluyveromyces.

MATERIALS AND METHODS

Yeast strains. The yeasts used in this study were obtained from the yeast culture collection of the Department of Food Science and Technology, University of California, Davis. The strain numbers are listed in Tables 1 and 2.

Enzyme preparations. The purification of exo-β-glucanases to antigenic homogeneity was done by a combination of ion-exchange and gel exclusion chromatographic procedures, as described previously (1, 6, 21). Protein homogeneity was based on reaching a constant specific activity during chromatography on molecular exclusion and ion-exchange gels (eluted isionically) and on the formation of a single precipitin band when the preparations were allowed to react with antisera prepared against them. In the case of K. aestivalii, additional evidence for homogeneity was obtained by immunoelectrophoresis (6).

Preparations for which homogeneity was not required (those used as heterologous antigens) were obtained from cultures grown in two 1,500-ml batches of yeast autolysate (0.5%)–glucose (5%) in shaker, 2,800-ml Fernbach flasks. The cultures were grown at room temperature until the stationary phase was reached. The cells were harvested, washed, and suspended in sodium succinate buffer (0.05 M, pH 5.5) as a thick suspension. They were then disrupted in a Braun homogenizer (Bromwell Scientific, Rochester, N.Y.) and centrifuged to remove cell walls and debris. The supernatants were dialedyzed to equilibrium against sodium succinate buffer (0.005 M, pH 6.2), centrifuged at 45,000 × g for 30 min, and applied to columns of diethylaminoethyl–agarose (diethylaminoethyl–Bio-Gel A, Bio-Rad Laboratories, Richmond, Calif.) previously equilibrated with sodium succinate buffer (0.01 M, pH 6.2). After the columns were washed with equilibration buffer until no further protein was eluted, the enzymes were eluted with sodium succinate buffer (0.05 M, pH 5.0) containing 0.45 M sodium chloride. The activity peaks were located in the elution fractions by a rapid method described elsewhere (5). The concentrated exo-β-glucanase solutions (3 to 5 ml) obtained in this manner contained from 0.1 to 10 U of glucanase activity. One unit is defined as the amount of enzyme that will release 1 μmol of glucose per min, at 30°C and pH 5.2, from 0.5% laminaran (Nutritional Biochemicals Corp., Cleveland, Ohio).

Determination of molecular weights. The molecular weights of exo-β-glucanases were estimated by gel exclusion chromatography on Bio-Gel P-100 or P-150, according to the method of Whitaker (23). The columns were calibrated with proteins of known molecular weights: ribonuclease A, 13,680; chymotrypsigenogen A, 25,650; and chicken ovalbumin, 46,000 (all from Worthington Biochemicals Corp., Freehold, N.J.); pepsin, 35,500 (Sigma Chemical Co., St. Louis, Mo.); and bovine serum albumin, 66,210 (Miles Research Products, Inc., Elkhart, Ind.). Their elution peaks were determined by measuring the absorbance (280 nm) of the elution fractions. The activity peaks of exo-β-glucanases were located by assaying the column fractions for their hydrolytic activity on laminaran and p-nitrophenyl-β-D-glucoside (Calbiochem, San Diego, Calif.).

A computer algorithm was used to determine the centers of the elution peaks accurately by a combination of two-curve fitting methods. Each elution quotient was calculated as the ratio of elution volume over void volume. The latter was determined for each run as the elution volume of blue dextran 2000 (Pharmacia Fine Chemicals, Inc., Piscataway, N.J.), and the standard curves relating elution quotient to the logarithm of molecular weight were interpolated to obtain the molecular weight values of the unknowns.

Immunological methods. Specific anti-exo-β-glucanase sera were prepared by immunizing rabbits against purified exo-β-glucanases, following an immunization schedule recommended in Methods in Immunology and Immunochemistry (27). The animals were handled in accordance with the recommendations of the National Institutes of Health (United States). Each of four female adult Dutch Belted rabbits received an intradermal injection of 0.6 ml of enzyme solution mixed with Freund complete adjuvant (Difco Laboratories, Detroit, Mich.). Each emulsion contained ca. 0.5 mg of enzyme protein. Two months after the initial immunization, intravenous booster containing 0.2 mg of purified enzyme protein in physiological saline were administered at 3-week intervals until satisfactory serum titers were obtained. The rabbits were then starved overnight, and 20 to 40 ml of blood was drawn by venous puncture of the ear and collected in petrolatum-coated tubes. These were incubated at 37°C for 1 h to speed up coagulation and were then stored overnight in the cold to allow clot retraction. The plasma was decanted and subsequently treated as described in detail by Champion et al. (3).

The immunological distances among the enzyme proteins were measured by the microcomplement fixation technique as described by these authors (3). Each set of complement fixation coordinates (log serum concentration; percent complement fixed at peak) that did not significantly deviate from linearity were individually used to calculate immunological distance values, which were then averaged for each pair of antigens compared. As a guide in evaluating the experimental accuracy of each average value, the product of the slope ratios (SR) and the standard deviations (SD) of the immunological distances was calculated, and it is reported for every test as SR × SD.

A large difference between the slopes of two complement fixation curves may be an indication that the proteins being compared differ from each other by features other than their amino acid sequences. In
such cases, the validity of immunological distance as a measure of relatedness is uncertain. Since the SD, in this case, is mostly an expression of experimental variation, the product SR × SD is a better index for the reliability (when it has a low value) of each immunological distance measurement reflecting primary structure differences. Thus, immunological distances for which the SR × SD values are in excess of about 30 should be considered with circumspection.

RESULTS

Molecular weights of yeast exo-β-glucanases. The strains of the species of Kluyveromyces studied are listed in Table 1, together with the molecular weights of their principal exo-β-glucanase components. Most of these enzymes have a molecular weight of approximately 40 × 10^3. Those of K. delphensis, K. vanudenii, and K. veronae, however, were significantly lower. The molecular weights of exo-β-glucanases of other ascomycetous yeasts ranged from 24 × 10^3 to 63 × 10^3 (Table 2). Surprisingly, these two extreme values were determined for two species of the same genus, Schizosaccharomyces.

A preliminary survey of basidiomycetous yeasts, including representatives of the genera Aessosporon, Filobasidium, Leucosporidium, Phaffia, and Rhodosporidium, was also made. All were characterized by levels of exo-β-glucanase activity which were so low that molecular weight determinations were impractical. It was noted, however, that these yeasts usually produced exo-β-glucanases with higher molecular weights than those found in ascomycetous yeasts, i.e., higher than 50 × 10^3.

Immunological comparison of yeast exo-β-glucanases. The reference strains were selected for their ability to produce sufficient amounts of exo-β-glucanase with adequate stability and for their postulated phylogenetic relationships as determined by other methods (8). The results shown in Tables 3 through 5 illustrate data obtained with reference strains of K. fragilis, K. phaseolosporus, and K. aestuarii, respectively. The sera against exo-β-glucanases from these three strains were highly specific, and all had high titers (i.e., 14,000, 9,000, and 17,000, respectively). The data (Table 3) show that the exo-β-glucanases from the type strains of K. bulgaricus, K. cicerisporus, K. marxianus, and K. wikenii showed no significant differences from that of K. fragilis and (Table 4) that those from the type strains of K. delphensis, K. lactis, K. vanudenii, and K. drosophilaram were all, to some degree, quite similar to that of the type strain of K. phaseolosporus. The data in Table 5 show the absence of strong cross-reactivity between the exo-β-glucanase from K. aestuarii UCD-FS&T 61-29 and the other exo-β-glucanases tested.

Additional experiments were performed with the enzyme from Saccharomyces cerevisiae UCD-FS&T 74-83 as a reference (Table 6). The exo-β-glucanase from this yeast proved to be a rather poor immunogen, for it produced antisera with titers lower than 1,000; this precluded its use in an extensive, in-depth survey. The exo-β-glucanases from strains of Saccharomyces chevalieri, S. italicus, and S. uvarum were the only ones to react, each giving reactions of near-identity with S. cerevisiae UCD-FS&T 74-83.

DISCUSSION

Comparison of molecular weights of yeast exo-β-glucanases. Yeast exo-β-glucanases are somewhat diverse in properties such as their kinetics of hydrolysis (Table 7), but most of those surveyed are generally similar in their substrate specificities and their responses to pH. They hydrolyze laminaran [α(1→3)-glucan] and pustulan [α(1→6)-glucan] by the successive removal of glucose residues from the non-reducing end. In K. aestuarii, it was shown (M. A. Lachance, Ph.D. dissertation, University of California, Davis, 1977) that the hydrolysis product, d-glucose, retains the β configuration, but whether other yeast glucanases cause an anomeric inversion is not known. Their action on

Table 1. Molecular weights of the exo-β-glucanases of the type strains of the species of Kluyveromyces and as determined by gel exclusion chromatography on Bio-Gel P-100 or P-150

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>CBS strain no.</th>
<th>Mol wt (×10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kluyveromyces aestuarii</td>
<td>61-29</td>
<td>4438</td>
<td>43</td>
</tr>
<tr>
<td>K. africanaus</td>
<td>57-16</td>
<td>2517</td>
<td>42</td>
</tr>
<tr>
<td>K. bulgaricus</td>
<td>71-13</td>
<td>2762</td>
<td>41</td>
</tr>
<tr>
<td>K. cicerisporus</td>
<td>71-14</td>
<td>4857</td>
<td>41</td>
</tr>
<tr>
<td>K. delphensis</td>
<td>56-2</td>
<td>2170</td>
<td>33</td>
</tr>
<tr>
<td>K. dozhanskii</td>
<td>50-45</td>
<td>2104</td>
<td>42</td>
</tr>
<tr>
<td>K. drosophilaram</td>
<td>51-130</td>
<td>2105</td>
<td>39</td>
</tr>
<tr>
<td>K. fragilis</td>
<td>71-58</td>
<td>397</td>
<td>41</td>
</tr>
<tr>
<td>K. lactis</td>
<td>71-59</td>
<td>683</td>
<td>41</td>
</tr>
<tr>
<td>K. loddier</td>
<td>70-3</td>
<td>2757</td>
<td>39</td>
</tr>
<tr>
<td>K. marxianus</td>
<td>55-82</td>
<td>712</td>
<td>41</td>
</tr>
<tr>
<td>K. phaffii</td>
<td>70-5</td>
<td>4417</td>
<td>42</td>
</tr>
<tr>
<td>K. phaseolosporus</td>
<td>50-80</td>
<td>2103</td>
<td>39</td>
</tr>
<tr>
<td>K. polysporus</td>
<td>57-17</td>
<td>2163</td>
<td>43</td>
</tr>
<tr>
<td>K. vanudenii</td>
<td>70-4</td>
<td>4372</td>
<td>35</td>
</tr>
<tr>
<td>K. veronae</td>
<td>55-41</td>
<td>2803</td>
<td>33</td>
</tr>
<tr>
<td>K. wickerhamii</td>
<td>54-210</td>
<td>2745</td>
<td>41</td>
</tr>
<tr>
<td>K. wikenii</td>
<td>71-15</td>
<td>5671</td>
<td>42</td>
</tr>
</tbody>
</table>

*University of California, Davis, Department of Food Science and Technology.

b Centraalbureau voor Schimmelcultures, Delft, The Netherlands.
VOL. 29, 1979 EVOLUTION OF YEAST EXO-\(\beta\)-GLUCANASE 73

Table 2. Molecular weights of exo-\(\beta\)-glucanases from species of various yeast genera and as determined by gel exclusion chromatography on Bio-Gel P-100 or P-150

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>CBS strain no.</th>
<th>Mol wt ((\times 10^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debaryomyces cantarellii</td>
<td>60-25(^b)</td>
<td>4349</td>
<td>43</td>
</tr>
<tr>
<td>D. hansenii</td>
<td>74-86(^b)</td>
<td>767</td>
<td>38</td>
</tr>
<tr>
<td>D. phaffii</td>
<td>60-24(^b)</td>
<td>4346</td>
<td>43</td>
</tr>
<tr>
<td>Dekkera intermedia</td>
<td>71-12</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Hanseniaspora valbyensis</td>
<td>68-23(^b)</td>
<td>479</td>
<td>38</td>
</tr>
<tr>
<td>Hansenula anomala</td>
<td>C-366(^b)</td>
<td>5759</td>
<td>42</td>
</tr>
<tr>
<td>Lipomyces starkeyi</td>
<td>55-103</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Lodderomyces elongisporus</td>
<td>68-17</td>
<td>2605</td>
<td>33</td>
</tr>
<tr>
<td>Metschnikowia bicuspidata</td>
<td>67-10(^b)</td>
<td>5575</td>
<td>43</td>
</tr>
<tr>
<td>Nadsonia elongata</td>
<td>61-42(^b)</td>
<td>2594</td>
<td>30</td>
</tr>
<tr>
<td>N. fulvescens</td>
<td>61-44(^b)</td>
<td>2996</td>
<td>32</td>
</tr>
<tr>
<td>Pichia membranaefaciens</td>
<td>57-22(^b)</td>
<td>107</td>
<td>38</td>
</tr>
<tr>
<td>P. polymorpha</td>
<td>57-25(^b)</td>
<td>186</td>
<td>40</td>
</tr>
<tr>
<td>Saccharomyces group I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>74-83</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>S. chevalieri</td>
<td>61-22(^b)</td>
<td>400</td>
<td>53</td>
</tr>
<tr>
<td>S. italicus</td>
<td>C-105</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>S. warum</td>
<td>55-48(^b)</td>
<td>395</td>
<td>55</td>
</tr>
<tr>
<td>Saccharomyces group II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. bisporus</td>
<td>66-24(^b)</td>
<td>702</td>
<td>59</td>
</tr>
<tr>
<td>S. rouxii</td>
<td>51-49</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Saccharomyces group III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. rosei</td>
<td>72-50(^b)</td>
<td>817</td>
<td>41</td>
</tr>
<tr>
<td>S. saitoanus</td>
<td>75-2(^b)</td>
<td>705</td>
<td>38</td>
</tr>
<tr>
<td>Saccharomyces cucujii</td>
<td>72-128</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Schizosaccharomyces japonicus var. japonicus</td>
<td>71-26(^b)</td>
<td>354</td>
<td>28</td>
</tr>
<tr>
<td>S. japonicus var. versatilis</td>
<td>60-255</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>S. maldevorans</td>
<td>70-49(^b)</td>
<td>5557</td>
<td>63</td>
</tr>
<tr>
<td>S. octosporus</td>
<td>C-103</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>S. pombe</td>
<td>C-277</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Schwanniomyces alluvis</td>
<td>54-83(^b)</td>
<td>4516</td>
<td>37</td>
</tr>
<tr>
<td>S. castellii</td>
<td>53-3</td>
<td>2863</td>
<td>36</td>
</tr>
<tr>
<td>S. occidentalis</td>
<td>73-2(^b)</td>
<td>1153</td>
<td>37</td>
</tr>
<tr>
<td>S. persoonii</td>
<td>61-9(^b)</td>
<td>2169</td>
<td>40</td>
</tr>
<tr>
<td>Trigonopsis variabilis</td>
<td>C-179</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Wickerhamia fluorescens</td>
<td>60-5(^b)</td>
<td>4564</td>
<td>43</td>
</tr>
<tr>
<td>Wingea robertsi</td>
<td>60-22(^b)</td>
<td>2934</td>
<td>54</td>
</tr>
</tbody>
</table>

\(^a\) See footnotes of Table 1 for explanations of abbreviations.

\(^b\) Type strain.

The \(\beta\)-(1\(\rightarrow\)3) linkage is generally more pronounced than on \(\beta\)-(1\(\rightarrow\)6)-linked glucans, but it is possible that the observed differences in velocity could be due to structural differences between laminaran and pustulan that are independent of their polymeric linkage. When the activation energies for these two substrates were calculated for the exo-\(\beta\)-glucanase from _K. aestuarii_ (6), the two values were not far apart. However, the apparent specificity of that enzyme, as evaluated by comparing the \(V_{\text{max}}/K_m\) ratios obtained for laminaran and pustulan, is clearly in favor of the \(\beta\)-(1\(\rightarrow\)3)-linked substrate. All yeast exo-\(\beta\)-glucanases that attack glucans from the nonreducing end also hydrolyze \(p\)-nitrophenyl-\(\beta\)-D-glucoside and a variety of other synthetic \(\beta\)-glucosides. The significance of these physical-chemical properties in relation to evolution of the enzyme is not clear, especially since their actual function in yeast morphogenesis is not known.

The interest of the results presented here lies essentially in their interpretation and their application to the knowledge of yeast phylogeny and to yeast taxonomy. The molecular weight distribution of exo-\(\beta\)-glucanases from ascomycetous yeasts is striking in its diversity (Table 2). However, it appears that yeasts which share certain basic characteristics have exo-\(\beta\)-glucanases that are not greatly different in size. For example, the strains of the species of _Debaryomyces_, _Hansenula_, _Kluysteromyces_, _Pichia_,
Table 3. Immunological comparison of exo-β-glucanases from the type strains of various species of yeasts, using Kluyveromyces fragilis UCD-FS&T 71-58 as the reference strain

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>N</th>
<th>Immunological distance</th>
<th>SD × SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kluyveromyces wikenii</td>
<td>71-15</td>
<td>4</td>
<td>-1</td>
<td>16</td>
</tr>
<tr>
<td>K. cicerisorus</td>
<td>71-14</td>
<td>4</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>K. bulgaricus</td>
<td>71-13</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>K. marxianus</td>
<td>55-82</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>K. aestuarii</td>
<td>61-29</td>
<td>3</td>
<td>159</td>
<td>14</td>
</tr>
<tr>
<td>K. polysporus</td>
<td>57-17</td>
<td>4</td>
<td>163</td>
<td>59</td>
</tr>
<tr>
<td>K. africanus</td>
<td>57-16</td>
<td>4</td>
<td>168</td>
<td>38</td>
</tr>
<tr>
<td>K. veronae</td>
<td>55-41</td>
<td>2</td>
<td>186</td>
<td>54</td>
</tr>
<tr>
<td>K. vanudenii</td>
<td>70-4</td>
<td>2</td>
<td>199</td>
<td>26</td>
</tr>
<tr>
<td>Debaryomyces phaffii</td>
<td>60-24</td>
<td>2</td>
<td>202</td>
<td>333</td>
</tr>
<tr>
<td>Kluyveromyces lactis</td>
<td>71-59</td>
<td>4</td>
<td>213</td>
<td>72</td>
</tr>
<tr>
<td>K. delphensis</td>
<td>56-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. dobzhanski</td>
<td>50-45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. drosophilarum</td>
<td>51-130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. lodderi</td>
<td>70-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. phaffii</td>
<td>70-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. phaseolosporus</td>
<td>50-80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. wickerhamii</td>
<td>54-210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dekkera intermedia</td>
<td>71-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansenula anomala</td>
<td>C-366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanseniaspora valbyensis</td>
<td>68-23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodderomyces elongisporus</td>
<td>68-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metschnikowia bicuspidata</td>
<td>67-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichia membranaefaciens</td>
<td>57-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces rosei</td>
<td>72-50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. uvarum</td>
<td>56-48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwanniomyces castellii</td>
<td>58-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a The homologous titration slope was 271.

*University of California, Davis, Department of Food Science and Technology.

*N, Number of points used in calculating the immunological distance.

*d Immunological distance = 100 log immunological dissimilarity (cf. reference 3).

*SD × SR, Product of the standard deviation of immunological distances calculated from each pair of coordinates and the ratio of the slopes of each titration curve.

*NR indicates either that no detectable complement fixation was observed or that excessive anti-complementarity was encountered.

Table 4. Immunological comparison of exo-β-glucanases from the type strains of various species of yeasts, using Kluyveromyces phaseolosporus UCD-FS&T 50-80 as the reference strain

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>N</th>
<th>Immunological distance</th>
<th>SD × SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kluyveromyces delphensis</td>
<td>56-2</td>
<td>4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>K. lactis</td>
<td>71-59</td>
<td>3</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>K. vanudenii</td>
<td>70-4</td>
<td>3</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>K. drosophilarum</td>
<td>51-130</td>
<td>3</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>K. dobzhanski</td>
<td>50-45</td>
<td>3</td>
<td>134</td>
<td>58</td>
</tr>
<tr>
<td>K. africanus</td>
<td>57-16</td>
<td>2</td>
<td>186</td>
<td>1</td>
</tr>
<tr>
<td>K. wickerhamii</td>
<td>54-210</td>
<td>4</td>
<td>206</td>
<td>41</td>
</tr>
<tr>
<td>K. aestuarii</td>
<td>61-29</td>
<td>2</td>
<td>209</td>
<td>3</td>
</tr>
<tr>
<td>K. fragilis</td>
<td>71-58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. lodderi</td>
<td>70-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. polyporus</td>
<td>57-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debaryomyces cantarellii</td>
<td>60-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>74-83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. rosei</td>
<td>72-50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a The homologous titration slope was 291. See footnotes b through f of Table 3 for explanations of abbreviations.
Table 5. Immunological comparison of exo-β-glucanases from the type strains of various species of yeasts, using Kluyveromyces aestuarii UCD-FS&T 61-29 as the reference strain

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>N</th>
<th>Immunological distance</th>
<th>SD x SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kluyveromyces drosophilarum</td>
<td>51-130</td>
<td>3</td>
<td>161</td>
<td>2</td>
</tr>
<tr>
<td>K. fragilis</td>
<td>71-58</td>
<td>3</td>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>K. wickerhamii</td>
<td>54-210</td>
<td>2</td>
<td>163</td>
<td>2</td>
</tr>
<tr>
<td>K. africanus</td>
<td>57-16</td>
<td>2</td>
<td>170</td>
<td>11</td>
</tr>
<tr>
<td>K. lactis</td>
<td>71-59</td>
<td>2</td>
<td>173</td>
<td>1</td>
</tr>
<tr>
<td>Dekkera intermedia</td>
<td>71-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansenula anomala</td>
<td>C-366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodderomyces elongisporus</td>
<td>68-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichia membranaefaciens</td>
<td>57-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces rosei</td>
<td>72-50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. warum</td>
<td>55-48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The homologous titration slope was 263. See footnotes b through f of Table 3 for explanations of abbreviations.

Table 6. Immunological comparison of exo-β-glucanases from various species of yeasts, using Saccharomyces cerevisiae UCD-FS&T 74-83 as the reference strain

<table>
<thead>
<tr>
<th>Species</th>
<th>UCD-FS&T strain no.</th>
<th>N</th>
<th>Immunological distance</th>
<th>SD x SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces italicus</td>
<td>C-105</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>S. warum</td>
<td>55-48</td>
<td>4</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>S. chevalieri</td>
<td>61-22</td>
<td>3</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>S. bisporus</td>
<td>66-24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. rosei</td>
<td>72-50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. rouxii</td>
<td>51-49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debaryomyces cantarelli</td>
<td>60-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kluyveromyces fragilis</td>
<td>71-58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodderomyces elongisporus</td>
<td>68-17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The homologous titration slope was 245. See footnotes b through f of Table 3 for explanations of abbreviations.

Table 7. Comparison of some physical-chemical properties of various yeast exo-β-glucanases

<table>
<thead>
<tr>
<th>Species*</th>
<th>Laminaran</th>
<th>Pustulan</th>
<th>pNPG*</th>
<th>pH activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{max}</td>
<td>K_m</td>
<td>V_{max}</td>
<td>K_m</td>
</tr>
<tr>
<td>Candida utilis (12)</td>
<td>1.2</td>
<td>0.7</td>
<td>3.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Cryptococcus albidus var. aeuris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>0.1</td>
<td>0.3</td>
<td>0.007</td>
<td>3.5</td>
</tr>
<tr>
<td>Hansenula anomala (1)</td>
<td>54</td>
<td>7.2</td>
<td>1.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Kluyveromyces aestuarii (6)</td>
<td>260</td>
<td>3.9</td>
<td>24</td>
<td>5.0</td>
</tr>
<tr>
<td>K. fragilis (1)</td>
<td>83</td>
<td>7.4</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>K. phaseolosporus (16)</td>
<td>2</td>
<td>35.7</td>
<td>6</td>
<td>5.2</td>
</tr>
<tr>
<td>Saccharomyces cerevisae (1)</td>
<td>9.5</td>
<td>3.8</td>
<td>0.7</td>
<td>215</td>
</tr>
</tbody>
</table>

* The numbers after the species name are literature citations.

a pNPG, p-Nitrophenyl-β-D-glucoside.
b V_{max}, Micromoles of glucose released per minute at 30°C and pH 5.5.

e Saccharomyces group III, and Schwanniomyces included in this survey all gave values clustering around 40 × 10^3. Species of these genera not only share certain properties, particularly in their sexual life cycles, but also exhibit important differences; this has resulted in the present state of confusion regarding their classification (7, 15, 20, 22). In contrast, the species of Schizosaccharomyces appeared highly diverse with respect to the size of their exo-β-glucanases. This possibly indicates that this genus is either polyphyletic or very ancient.
A few discrepancies were noted between molecular weights reported here and those previously reported in the literature. For example, Abd-EI-A1 and Phaff (1) calculated values of 22×10^3, 30×10^3, and 40×10^3 for the exo-β-glucanases from strains of $K. fragilis$, $H. anoma-
ala$, and $S. cerevisiae$, respectively. These authors used column chromatography, as we did, but their columns were packed with cross-linked dextran (Sephadex) gels (for which these en-
zymes show significant affinity) eluted with buffers of lower ionic strength (0.2 M). This results in lower apparent molecular weights. We obtained values of 41×10^3, 42×10^3, and 51×10^3, respectively, for the same yeast strains. Dur-
ing the purification of exo-β-glucanases from strains of $K. aestivalii$ and $K. phaseolosporus$, it was observed (Lachance, Ph.D. dissertation) that, when these enzymes were chromato-
graphed on different grades of Sephadex, their elution volumes indicated apparent molecular weights of approximately 22×10^3. The enzyme from a strain of $K. phaseolosporus$ similarly eluted from Sephacryl S-200 with an apparent molecular weight of 19×10^3 (21). The molecular weights reported here and determined on poly-
acrylamide columns are thus of a relative, al-
though more realistic, nature. The influence of carbohydrate content of the different exo-β-glu-
canases on their chromatographic behavior is not known.

The standard deviation of molecular weights of exo-β-glucanases shown to be very similar by microcomplement fixation, or those from yeasts with high degrees of DNA complementarity, was 1.7×10^3.

Immunological comparisons of exo-β-glucanases. Even though exo-β-glucanases in the genus *Kluveromyces* appeared rather ho-

geneous with respect to their molecular weights, an appreciable degree of diversity was detected by the microcomplement fixation tech-
nique. A range of immunological distances from 0 to 27 was found for eight of our comparisons, but all other values were 130 or higher,indicating that the primary structure of exo-β-glu-
canase is not highly conserved in evolutionary time. If the relationship of four units of immunological distance from 0 to 27 was found for eight of our comparisons, but all other values were 130 or higher, indicating that the primary structure of exo-β-glucanase is not highly conserved in evolutionary time. If the relationship of four units of immunological distance for every 1% amino acid replacement, as found for bird lysozyme (3), holds equally for yeast exo-β-glucanases, many of these enzymes in *Kluveromyces* differ from each other by at least 40% of their sequences. It follows that exo-

β-glucanases may not be proteins of choice for deriving general yeast phylogenies.

The accuracy of immunological distance values (i.e., >130) can be questioned, but the one reciprocal test ($K. fragilis \times K. aestivalii$) to result from this study gave concordant values of 159 (SR \times SD = 14; Table 3) and 162 (SR \times SD = 1; Table 5). Higher values should nevertheless be considered with caution (V. M. Sarich, per-
sonal communication).

Various degrees of immunological similarity between exo-β-glucanases from different yeasts may take on different significances, depending on whether or not gene exchange is possible among the species compared. Our survey pro-
vided no clue as to the importance of intraspe-
cific gene polymorphism in yeast, since it is not known whether or not in nature the "species" compared are capable of effective genetic recom-

The few comparisons performed with *Saccharomyces* strains with reference to *Saccharomy-

ces cerevisiae* (Table 6) were also in agreement with the DNA reassociation patterns obtained with these strains (2).

Assuming that all presently defined "species" of *Kluveromyces* are derived from a common ancestor and have not undergone reticulate ev-
olution, the immunological distances found be-
tween the exo-β-glucanases of each of these spe-
cies can be taken as an index of their time of
divergence. From this, the following conclusions can be drawn.

(i) The choice of ascospore shape as a basis for establishing two lines of development in the genus Kluyveromyces appears unjustified, because in two instances, "species" with reniform spores were shown to be immunologically closely related to "species" producing spherical ascospores (i.e., K. fragilis and K. marxianus, with K. bulgaricus, K. cicerisporus, and K. wilkenii, respectively; K. delphensis, K. drosophilarum, and K. phaseolosporus, with K. lactis and K. vanudeni, respectively); conversely, many "species" with similar spore morphologies showed little resemblance in their exo-β-glucanases.

(ii) Combining our results with those obtained by DNA/DNA base sequence comparisons (2, 8, 9), the following should be retained as separate species: K. aestivalii, K. africanus, K. doizhan-skiii, K. loddieri, K. phaffii, K. polysporus, K. veronae, and K. wickerhamii.

(iii) The close phenotypic similarities (14, 19) observed between (a) K. aestivalii and K. lactis, (b) K. delphensis and K. phaffii or K. africanus, (c) K. loddieri and K. polysporus, and (d) K. phaseolosporus and K. wickerhamii are not supported by the immunological data or by DNA/DNA reassociation experiments (7); they appear to be the results of either evolutionary parallelism or, more likely, convergence.

(iv) The intermediate immunological distances found between the exo-β-glucanases from K. phaseolosporus, on the one hand, and those from K. delphensis, K. lactis, K. vanudeni, and K. drosophilarum, on the other hand, are indications that these yeasts share a relatively recent common ancestry.

K. lactis and K. vanudeni, which were shown to share 97% (relative values) of their DNA base sequences (8), do not significantly differ in their respective immunological distances from K. phaseolosporus (Table 4). These two organisms could therefore be considered as representatives of the same species. K. drosophilarum, the most distant from K. phaseolosporus among the strains of intermediate status (Table 4), showed 70% relative DNA reassociation with the latter (8).

The relatedness determined between K. delphensis and K. phaseolosporus was unexpected, in view of their relatively low degree of phenotypic similarity (14, 19) and low inferred DNA complementarity (H. Presley and H. J. Phaff, unpublished data).

(v) Four nomenspecies (K. bulgaricus, K. cicerisporus, K. wilkenii, and K. marxianus) were found to have exo-β-glucanases identical in primary structure to that of K. fragilis. Martini (8) demonstrated a very high degree of DNA complementarity among the first three species, and Bicknell and Douglas (2) demonstrated the same between K. fragilis and K. marxianus. This suggests that these five yeasts are representatives of the same species.

A biological definition of yeast species will be possible in the future, when enough knowledge is acquired about genetic recombination among natural yeast populations. This will necessitate a thorough study of gene distribution for naturally occurring genetic polymorphisms over geographic gradients. Some progress in this area of research has been made for natural populations of Pichia heedii (13) and P. amethionina (16). In each of these yeasts genetic polymorphism was demonstrated over geographic gradients, and the physiological strains were capable of interbreeding.

Awaiting further knowledge, yeast taxonomists are still faced with the necessity of defining groups of yeast strains as "species," biological or not. Macromolecular comparisons provide taxonomists with an excellent tool for temporarily accomplishing this task. The classification of yeasts that have highly similar macromolecular sequences and that have undergone rapid divergence in some phenotypic properties (allowing occupation of new niches) remains a difficult problem, to be solved only by the judicious application of subjective judgments by experienced taxonomists.

ACKNOWLEDGMENTS

We are greatly indebted to Tomás G. Villa for his kind cooperation, particularly in the purification of enzymes used in this work. Thanks are extended to Mary G. Miranda for her skillful assistance. We are grateful to Vincent M. Sarich, William T. Starmer, and John R. Whitaker for their helpful suggestions and comments.

This work has been made possible by fellowships awarded to M. A. Lachance by the National Research Council of Canada and by the Direction générale de l'Enseignement supérieur, Ministère de l'Éducation, Quebec, Canada. Partial financial support of the project from the Chancellor's Patent Fund, University of California, Davis, and the donation of some rabbits by Paul E. Conley, Elk Grove, Calif., are gratefully acknowledged.

REPRINT REQUESTS

Address reprint requests to: H. J. Phaff, Department of Food Science and Technology, University of California, Davis, CA 95616.

LITERATURE CITED

