Unlocking the world of microbiomes
In 2020 we celebrate 75 years of the anniversary of our founding with a year of activities dedicated to demonstrating the impact of microbiologists’ past, present and future – bringing together and empowering communities that help shape the future of microbiology. We are launching new collections of digital content throughout the anniversary year. The first digital hub is Unlocking the world of microbiomes: exploring microbial communities, which will examine the microbiome and human health, agriculture and food microbiomes and environmental and industrial microbiomes.
The ‘Unlocking the world of microbiomes’ collection brings together articles from across our journals exploring microbial communities and examining the microbiome and human health. This collection is an update of a collection by the Microbiology Society and the British Society for Immunology launched for World Microbiome Day; the ‘Microbiome’ collection can be viewed on Science Open.
Collection Contents
1 - 20 of 44 results
-
-
Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment
Introduction. Ankylosing spondylitis (AS) is a systemic progressive disease with an unknown etiology that may be related to the gut microbiome. Therefore, a more thorough understanding of its pathogenesis is necessary for directing future therapy.
Aim. We aimed to determine the differences in intestinal microbial composition between healthy individuals and patients with AS who received and who did not receive treatment interventions. In parallel, the pathology of AS in each patient was analysed to better understand the link between AS treatment and the intestinal microbiota of the patients.
Methodology. Sixty-six faecal DNA samples, including 37 from healthy controls (HCs), 11 from patients with untreated AS (NM), 7 from patients treated with nonsteroidal anti-inflammatory drugs (e.g. celecoxib; WM) and 11 from patients treated with Chinese herbal medicine (CHM), such as the Bushen–Qiangdu–Zhilv decoction, were collected and used in the drug effect analysis. All samples were sequenced using Illumina HiSeq 4000 and the microbial composition was determined.
Results. Four species were enriched in the patients with AS: Flavonifractor plautii , Oscillibacter , Parabacteroides distasonis and Bacteroides nordii (HC vs. NM, P<0.05); only F. plautii was found to be significantly changed in the NM-HC comparison. No additional species were found in the HC vs. CHM analysis, which indicated a beneficial effect of CHM in removing the other three strains. F. plautii was found to be significantly increased in the comparison between the HC and WM groups, along with four other species ( Clostridium bolteae , Clostridiales bacterium 1_7_47FAA, C. asparagiforme and C. hathewayi ). The patients with AS harboured more bacterial species associated with carbohydrate metabolism and glycan biosynthesis in their faeces. They also had bacterial profiles less able to biodegrade xenobiotics or synthesize and transport vitamins.
Conclusion. The gut microbiota of the patients with AS varied from that of the HCs, and the treatment had an impact on this divergence. Our data provide insight that could guide improvements in AS treatment.
-
-
-
Haliea alexandrii sp. nov., isolated from phycosphere microbiota of the toxin-producing dinoflagellate Alexandrium catenella
A Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped bacterium, named strain LZ-16-2T, was isolated from the phycosphere microbiota of the paralytic shellfish poisoning toxin-producing marine dinoflagellate Alexandrium catenella LZT09. Strain LZ-16-2T grew optimally at 28 °C at pH 6.5 and with 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain LZ-16-2T fell within the genus Haliea and was most closely related to Haliea salexigens DSM 19537T, with which the new isolate exhibited 98.5 % 16S rRNA gene sequence similarity. The major respiratory quinone was Q-8. The predominant cellular fatty acids were C17 : 1 ω8c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C17 : 1 ω6c, C11 : 0 3-OH and C17 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The average nucleotide identity and in silico DNA–DNA genome hybridization relatedness values between strain LZ-16-2T and its closest relative, H. salexigens DSM 19537T, were 92.8 and 55.1 %, respectively. The DNA G+C content was 61.3 mol%. Differential phenotypic properties and phylogenetic distinctiveness distinguished strain LZ-16-2T from all other members of the genus Haliea . On the basis of the polyphasic characterization, strain LZ-16-2T represents a novel species of the genus Haliea , for which the name Haliea alexandrii sp. nov. is proposed. The type strain is LZ-16-2T (=KCTC 62344T=CCTCC AB2017229T).
-
-
-
Entomomonas moraniae gen. nov., sp. nov., a member of the family Pseudomonadaceae isolated from Asian honey bee gut, possesses a highly reduced genome
More LessThe honey bee gut microbiota contains many bacterial lineages that are specific to this ecosystem. Apis cerana, raised across the Asian continent, is of great significance to the maintenance and development of ecology and agriculture in Asia. Here, we report the isolation and characterization of strain QZS01T from the gut of Apis cerana from Pingwu County, Sichuan Province, PR China. The results of phylogenetic analysis based on 16S rRNA sequences showed that strain QZS01T forms a monophyletic group together with clone sequences derived from variable insect hosts, and it shows 92% sequence similarity to its closest relative, Pseudomonas knackmussii. Strain QZS01T possesses a reduced genome (3.3 Mbp; G+C content, 38.05 mol%) compared to all other Pseudomonas species, and the whole-genome based phylogenetic reconstruction showed that strain QZS01T represents a novel genus within the family Pseudomonadaceae. Strain QZS01T is a Gram-stain-negative facultative anaerobe. It grows on brain heart infusion agar and the energy sources utilized for growth are very limited. Based on the results of genotypic and phenotypic analyses, we propose a novel genus and species, Entomomonas moraniae gen. nov., sp. nov., with the type strain QZS01T (=CGMCC 1.13498T=KCTC 62495T).
-
-
-
The gut microbiome and neuropsychiatric disorders: implications for attention deficit hyperactivity disorder (ADHD)
More LessNeuropsychiatric disorders (NPDs) such as depression, anxiety, bipolar disorder, autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) all relate to behavioural, cognitive and emotional disturbances that are ultimately rooted in disordered brain function. More specifically, these disorders are linked to various neuromodulators (i.e. serotonin and dopamine), as well as dysfunction in both cognitive and socio-affective brain networks. Increasing evidence suggests that the gut environment, and particularly the microbiome, plays a significant role in individual mental health. Although the presence of a gut–brain communication axis has long been established, recent studies argue that the development and regulation of this axis is dictated by the gut microbiome. Many studies involving both animals and humans have connected the gut microbiome with depression, anxiety and ASD. Microbiome-centred treatments for individuals with these same NPDs have yielded promising results. Despite its recent rise and underlying similarities to other NPDs, both biochemically and symptomatically, connections between the gut microbiome and ADHD currently lag behind those for other NPDs. We demonstrate that all evidence points to the importance of, and dire need for, a comprehensive and in-depth analysis of the role of the gut microbiome in ADHD, to deepen our understanding of a condition that affects millions of individuals worldwide.
-
-
-
Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota
The role of commensal microbiota in enteric viral infections has been explored extensively, but the interaction between human gut microbiota (HGM) and human norovirus (HuNoV) is poorly understood. In this study, we established an HGM-Transplanted gnotobiotic (Gn) pig model of HuNoV infection and disease, using an infant stool as HGM transplant and a HuNoV GII.4/2006b strain for virus inoculation. Compared to germ-free Gn pigs, HuNoV inoculation in HGMT Gn pigs resulted in increased HuNoV shedding, characterized by significantly higher shedding titres on post inoculation day (PID) 3, 4, 6, 8 and 9, and significantly longer mean duration of virus shedding. In addition, virus titres were significantly higher in duodenum and distal ileum of HGMT Gn pigs on PID10, while comparable and transient HuNoV viremia was detected in both groups. 16S rRNA gene sequencing demonstrated that HuNoV infection dramatically altered intestinal microbiota in HGMT Gn pigs at the phylum (Proteobacteria, Firmicutes and Bacteroidetes) and genus ( Enterococcus , Bifidobacterium , Clostridium , Ruminococcus , Anaerococcus , Bacteroides and Lactobacillus ) levels. In summary, enhanced GII.4 HuNoV infection was observed in the presence of HGM, and host microbiota was susceptible to disruption upon HuNoV infection.
-
-
-
Modification of Candida albicans cell wall by commensal gut bacteria
More LessThe human gut is populated with a vast community of microbes, the microbiota. Fungi comprise 0.1% of the total gut microbiota. Some of these fungi exist as benign members, however others such Candida albicans can undergo a pathogenic switch causing disease. The fungal cell wall is the first target for immune system recognition. Recent studies have suggested that Candida is decorated with different cell wall epitopes within different physiological niches, due to the impact of carbon source and oxygen availability on cell wall remodelling. Here we hypothesize that resident gut bacteria also play a major role in fungal cell wall remodelling and immune recognition. Data from our lab has shown that a common bacterium from the gut, Bacteroides thetaiotaomicron (Bt), produces an extensive repertoire of degradative enzymes to breakdown the Candida cell wall. Recently, we have identified novel enzymes in Bt from the glycoside hydrolase family 130 (GH130), which specifically target β1,2-linked mannan, a unique feature of Candida mannan. We have deleted multiple fungal mannan specific loci in Bt and examined the ability of deletion strains to utilise Candida mannan as a carbon source. These data suggest that Bt contains multiple pathways to degrade the Candida cell wall. Now we are systematically dissecting the impact of mannan degradation on the physiology of the fungus. This will provide insights into how two prominent members of the gut microbiota interact with each other, how the Candida cell wall is modified in the anaerobic environment of the gut, and the importance of this in promoting immune homeostasis.
-
-
-
Prosthetic joint infections present diverse and unique microbial communities using combined whole-genome shotgun sequencing and culturing methods
Introduction. Prosthetic joint infections (PJIs) are challenging to treat therapeutically because the infectious agents often are resistant to antibiotics and capable of abundant growth in surface-attached biofilms. Though infection rates are low, ca. 1–2 %, the overall increase in the sheer number of joint replacement surgeries results in an increase in patients at risk.
Aims. This study investigates the consensus of microbial species comprising PJI ecology, which is currently lacking.
Methodology. In this study, PJI populations from seven patients were analysed using combined culturing and whole-genome shotgun sequencing (WGSS) to establish population profiles and compare WGSS and culture methods for detection and identification of the PJI microbiome.
Results. WGSS detected strains when culture did not, notably dormant, culture-resistant and rare microbes. The CosmosID algorithm was used to predict micro-organisms present in the PJI and discriminate contaminants. However, culturing indicated the presence of microbes falling below the WGSS algorithm threshold. In these instances, microbes cultured are believed to be minor species. The two strategies were combined to build a population profile.
Conclusions. Variability between and among PJIs showed that most infections were distinct and unique. Comparative analysis of populations revealed PJIs to form clusters that were related to, but separate from, vaginal, skin and gut microbiomes. Fungi and protists were detected by WGSS, but the role of fungi is just beginning to be understood and for protists it is unknown. These micro-organisms and their novel and strain-specific microbial interactions remain to be determined in current clinical tests.
-
-
-
Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling
More LessAutomated, high-throughput technologies are becoming increasingly common in microbiome studies to decrease costs and increase efficiency. However, in microbiome studies, small differences in methodology – including storage conditions, wet lab methods, sequencing platforms and data analysis – can influence the reproducibility and comparability of data across studies. There has been limited testing of the effects of high-throughput methods, including microfluidic PCR technologies. In this paper, we compare two extraction methods (the QIAamp DNA Stool Mini Kit and the MoBio PowerSoil DNA Isolation kit), two taq polymerase enzymes (MyTaq HS Red Mix and Accustart II PCR ToughMix), two primer sets (V3–V4 and V4–V5) and two amplification methods (a common two-step PCR protocol and amplicon library preparation on the Fluidigm Access Array system that allows automated multiplexing of primers). Gut microbial community profiles were significantly affected by all variables. While there were no significant differences in alpha diversity measured between the two extraction methods, there was an effect of extraction method on community composition measured by unweighted UniFrac distances. Both amplification method and primers had a significant effect on both alpha diversity and community composition. The relative abundance of Actinobacteria was significantly lower when using the MoBio kit or Fluidigm amplification method, and the relative abundance of Firmicutes was lower when using the Qiagen kit. Microbial community profiles based on Fluidigm-generated amplicon libraries were not comparable to those generated with more commonly used methods. Researchers should carefully consider the limitations and biases that different extraction and amplification methods can introduce into their results. Additionally, more thorough benchmarking of automated and multiplexing methods is necessary to determine the magnitude of the potential trade-off between the quality and the quantity of data.
-
-
-
Investigating Gut Microbiota-Host Interactions in a Microaerobic Environment
More LessThe gut microbiota has an important role in maintaining intestinal health and protecting against enteric infections (colonisation resistance). Nevertheless the majority of these interactions haven't been explored, largely due to a lack of experimental model systems that can culture oxygen-sensitive commensals alongside intestinal cells. In this project, we have established a novel in vitro model system of the human intestinal epithelium (Vertical Diffusion Chamber, VDC) which also supports growth of strictly anaerobic bacteria. We have applied this system to investigate the interactions of gut symbiont Ruminococcus gnavus with a functioning mucus-producing epithelium, established using T84 and goblet-like LS174T cell lines, and its effect on infection with foodborne pathogen enteropathogenic E. coli (EPEC).
Initial work focused on identifying a culture medium that supports R. gnavus and EPEC growth whilst maintaining epithelial integrity and barrier function. This has been achieved by establishing bacterial growth curves in different media and assessing epithelial barrier function by transepithelial electrical resistance and immunofluorescence staining (IFS) of tight-junction protein occludin. Further IFS demonstrated that introduction of LS174T cells to the epithelium causes mucin secretion and facilitates colonisation by R. gnavus. Co-culture of EPEC with R. gnavus reduces numbers of viable and adherent EPEC, but only when LS174T are present.
These data indicate potential colonisation resistance activity by R. gnavus, discovered by utilising a model system that supports anaerobic culture and a functioning epithelium side-by-side. Future work will investigate colonisation resistance activity for a panel of R. gnavus strains and attempt to elucidate mechanisms behind this activity.
-
-
-
Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium . In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii . In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
-
-
-
Oceaniglobus ichthyenteri sp. nov., isolated from the gut microflora of sea bass (Dicentrarchus labrax L.) and emended description of the genus Oceaniglobus
More LessA Gram-stain-negative, non-flagellated, catalase-positive, oxidase-positive bacterial strain, designated YLY08T, was isolated from the gut microflora of sea bass (Dicentrarchus labrax L.) collected from the coast of Yuanyao Wharf, Weihai, PR China, and subjected to a polyphasic taxonomic study. Strain YLY08T grew optimally at 28-30 °C, at pH 7.0–7.5 and in the presence of 2.0–3.0 % (w/v) NaCl. Poly-β-hydroxybutyrate granules were produced. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain YLY08T clustered with the type strain of Oceaniglobus indicus , with which it exhibited 95.3 % sequence similarity, while the similarity to other genera was below 95.0 %. Genomic analyses, including average nucleotide identity and the digital DNA–DNA hybridization, clearly separated YLY08T from O. indicus MCCC 1A11863T with values below the thresholds for species delineation. The major cellular fatty acid was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The sole respiratory quinone detected was Q-10. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, diphosphatidylglycerol, one unidentified aminolipid and one unidentified phospholipid. The genome of strain YLY08T, with 38 assembled contigs, was 3.9 Mb long with a G+C content of 59.0 mol%. The results of the phenotypical, phylogenetic and biochemical analyses between the strain YLY08T and the related type strain indicated that this strain represents a novel species in genus Oceaniglobus within the family Rhodobacteraceae , for which the name Oceaniglobus ichthyenteri sp. nov. is proposed. The type strain is YLY08T (=MCCC 1H00318T=KCTC 62182T).
-
-
-
Poo and Puns: The representation of Faecal Microbiota Transplants in English-language print media (2003 – 2017)
More LessThis study investigates how English-language news sources represented faecal microbiota transplants (FMT) between 2003 and 2017. In the context of this study, FMT is understood to be the process of transferring stool from a healthy donor to a recipient with a dysfunctional intestinal flora in order to repopulate their gut microbiome. A corpus of news articles on FMT, was produced by searching for ‘fa(e)cal microbial’, ‘microbiota transplant‘ and ‘stool transplant’ on the Nexis® UK news database, generating a corpus suitable for qualitative analysis (n = 504 articles). In order to uncover emerging social representations, we investigated press coverage of stool transplants, as well as broader themes associated with health and the gut microbiome. Our findings show that print media focused particularly on creating novel, mainly hopeful, social representations of faeces through wordplay and punning, side-lining issues of risk and fear. We also identify changing metaphorical framings of microbes and bacteria from ‘enemies’ to ‘friends’. Additionally, we found readers are familiarised with FMT through the depiction of the process as being both mundane and highly medicalised. We argue emerging media representations have the potential to shape more positive social representations of FMT in the general population, paving the way for FMT to become a more socially acceptable and effective medical procedure. Future research can build on this baseline in order to study how social representations circulate in the wider media and public sphere, and how they may change over time and differ between countries as research into FMT progresses.
https://www.tandfonline.com/doi/full/10.1080/14636778.2019.1637721
-
-
-
Analysis of the effect of smoking on the buccal microbiome using next-generation sequencing technology
Purpose. This study aimed to investigate the effect of smoking on the buccal microbiome and to analyse the descriptive ability of each of the seven hypervariable regions in their 16S rRNA genes.
Methodology. Microbiome compositions of 40 buccal swab samples collected from smokers (n =20) and non-smokers (n =20) were determined using 16S rRNA sequencing. Seven different 16S rRNA hypervariable regions (V2, V3, V4, V6-7, V8 and V9) in each sample were amplified using the Ion Torrent 16S Metagenomics kit and were sequenced on the Ion S5 instrument.
Results. Seven hypervariable regions in the 16S rRNA gene were successfully sequenced for all samples tested. The data obtained with the V2 region was found to be informative but the consensus data generated according to a number of operational taxonomic unit reads gathered from all seven hypervariable regions gave the most accurate result. At the phylum level, no statistically significant difference was found between smokers and non-smokers whereas relative abundances of Veillonella atypica , Streptococcus australis , Prevotella melaninogenica , Prevotella salivae and Rothia mucilaginosa showed significant increases in the smoker group (P-adj=0.05). Alpha diversity results did not show a significant difference between the two groups; however, beta diversity analysis indicated that samples of smoker and non-smoker groups had a tendency to be clustered within themselves.
Conclusion. The results of the current study indicate that smoking is a factor influencing buccal microbiome composition. In addition, sequencing of all seven hypervariable regions yielded more accurate results than those with any of the single variable regions.
-
-
-
Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization
Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen.
-
-
-
Microbiome digital signature of MCR genes – an in silico approach to study the diversity of methanogenic population in laboratory-developed and pilot-scale anaerobic digesters
The production of biogas by anaerobic digestion (AD) of organic/biological wastes has a firm place in sustainable energy production. A simple and cost-effective anaerobic jar at a laboratory scale is a prerequisite to study the microbial community involved in biomass conversion and releasing of methane gas. In this study, a simulation was carried out using a laboratory-modified anaerobic-jar-converted digester (AD1) with that of a commercial/pilot-scale anaerobic digester (AD2). Taxonomic profiling of biogas-producing communities by means of high-throughput methyl coenzyme-M reductase α-subunit (mcrA) gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Euryarchaeota , Chordata, Firmicutes and Proteobacteria appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Key micro-organisms identified from AD were Methanocorpusculum labreanum and Methanobacterium formicicum . Specific biogas production was found to be significantly correlating to Methanosarcinaceae . It can be implied from this study that the metagenomic sequencing data was able to dissect the microbial community structure in the digesters. The data gathered indicates that the anaerobic-jar system could throw light on the population dynamics of the methanogens at laboratory scale and its effectiveness at large-scale production of bio-methane. The genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies will be highly valuable in determining the efficacy of an anaerobic digester.
-
-
-
Casing microbiome dynamics during button mushroom cultivation: implications for dry and wet bubble diseases
The casing material required in mushroom cultivation presents a very rich ecological niche, which is inhabited by a diverse population of bacteria and fungi. In this work three different casing materials, blonde peat, black peat and a 50 : 50 mixture of both, were compared for their capacity to show a natural suppressive response against dry bubble, Lecanicillium fungicola (Preuss) Zare and Gams, and wet bubble, Mycogone perniciosa (Magnus) Delacroix. The highest mushroom production was collected from crops cultivated using the mixed casing and black peat, which were not significantly different in yield. However, artificial infection with mycoparasites resulted in similar yield losses irrespective of the material used, indicating that the casing materials do not confer advantages in disease suppression. The composition of the microbiome of the 50 : 50 casing mixture along the crop cycle and the compost and basidiomes was evaluated through next-generation sequencing (NGS) of the V3–V4 region of the bacterial 16S rRNA gene and the fungal ITS2 region. Once colonized by Agaricus bisporus, the bacterial diversity of the casing microbiome increased and the fungal diversity drastically decreased. From then on, the composition of the casing microbiome remained relatively stable. Analysis of the composition of the bacterial microbiome in basidiomes indicated that it is highly influenced by the casing microbiota. Notably, L. fungicola was consistently detected in uninoculated control samples of compost and casing using NGS, even in asymptomatic crops. This suggests that the naturally established casing microbiota was able to help to suppress disease development when inoculum levels were low, but was not effective in suppressing high pressure from artificially introduced fungal inoculum. Determination of the composition of the casing microbiome paves the way for the development of synthetic casing communities that can be used to investigate the role of specific components of the casing microbiota in mushroom production and disease control.
-
-
-
Antibiotic resistomes of healthy pig faecal metagenomes
More LessAntibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)−1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics.
-
-
-
Sucrose 6F-phosphate phosphorylase: a novel insight in the human gut microbiome
The human gut microbiome plays an essential role in maintaining human health including in degradation of dietary fibres and carbohydrates further used as nutrients by both the host and the gut bacteria. Previously, we identified a polysaccharide utilization loci (PUL) involved in sucrose and raffinose family oligosaccharide (RFO) metabolism from one of the most common Firmicutes present in individuals, Ruminococcus gnavus E1. One of the enzymes encoded by this PUL was annotated as a putative sucrose phosphate phosphorylase (RgSPP). In the present study, we have in-depth characterized the heterologously expressed RgSPP as sucrose 6F-phosphate phosphorylase (SPP), expanding our knowledge of the glycoside hydrolase GH13_18 subfamily. Specifically, the enzymatic characterization showed a selective activity on sucrose 6F-phosphate (S6FP) acting both in phosphorolysis releasing alpha-d-glucose-1-phosphate (G1P) and alpha-d-fructose-6-phosphate (F6P), and in reverse phosphorolysis from G1P and F6P to S6FP. Interestingly, such a SPP activity had never been observed in gut bacteria before. In addition, a phylogenetic and synteny analysis showed a clustering and a strictly conserved PUL organization specific to gut bacteria. However, a wide prevalence and abundance study with a human metagenomic library showed a correlation between SPP activity and the geographical origin of the individuals and, thus, most likely linked to diet. Rgspp gene overexpression has been observed in mice fed with a high-fat diet suggesting, as observed for humans, that intestine lipid and carbohydrate microbial metabolisms are intertwined. Finally, based on the genomic environment analysis, in vitro and in vivo studies, results provide new insights into the gut microbiota catabolism of sucrose, RFOs and S6FP.
-
-
-
Genomic analysis of bacteria in the Acute Oak Decline pathobiome
More LessThe UK’s native oak is under serious threat from Acute Oak Decline (AOD). Stem tissue necrosis is a primary symptom of AOD and several bacteria are associated with necrotic lesions. Two members of the lesion pathobiome, Brenneria goodwinii and Gibbsiella quercinecans , have been identified as causative agents of tissue necrosis. However, additional bacteria including Lonsdalea britannica and Rahnella species have been detected in the lesion microbiome, but their role in tissue degradation is unclear. Consequently, information on potential genome-encoded mechanisms for tissue necrosis is critical to understand the role and mechanisms used by bacterial members of the lesion pathobiome in the aetiology of AOD. Here, the whole genomes of bacteria isolated from AOD-affected trees were sequenced, annotated and compared against canonical bacterial phytopathogens and non-pathogenic symbionts. Using orthologous gene inference methods, shared virulence genes that retain the same function were identified. Furthermore, functional annotation of phytopathogenic virulence genes demonstrated that all studied members of the AOD lesion microbiota possessed genes associated with phytopathogens. However, the genome of B. goodwinii was the most characteristic of a necrogenic phytopathogen, corroborating previous pathological and metatranscriptomic studies that implicate it as the key causal agent of AOD lesions. Furthermore, we investigated the genome sequences of other AOD lesion microbiota to understand the potential ability of microbes to cause disease or contribute to pathogenic potential of organisms isolated from this complex pathobiome. The role of these members remains uncertain but some such as G. quercinecans may contribute to tissue necrosis through the release of necrotizing enzymes and may help more dangerous pathogens activate and realize their pathogenic potential or they may contribute as secondary/opportunistic pathogens with the potential to act as accessory species for B. goodwinii . We demonstrate that in combination with ecological data, whole genome sequencing provides key insights into the pathogenic potential of bacterial species whether they be phytopathogens, part-contributors or stimulators of the pathobiome.
-
-
-
Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures
Cyanobacteria form one of the most diversified phyla of Bacteria. They are important ecologically as primary producers, for Earth evolution and biotechnological applications. Yet, Cyanobacteria are notably difficult to purify and grow axenically, and most strains in culture collections contain heterotrophic bacteria that were probably associated with Cyanobacteria in the environment. Obtaining cyanobacterial DNA without contaminant sequences is thus a challenging and time-consuming task. Here, we describe a metagenomic pipeline that enables the easy recovery of genomes from non-axenic cultures. We tested this pipeline on 17 cyanobacterial cultures from the BCCM/ULC public collection and generated novel genome sequences for 12 polar or subpolar strains and three temperate ones, including three early-branching organisms that will be useful for phylogenomics. In parallel, we assembled 31 co-cultivated bacteria (12 nearly complete) from the same cultures and showed that they mostly belong to Bacteroidetes and Proteobacteria, some of them being very closely related in spite of geographically distant sampling sites.
-