-
Volume 170,
Issue 10,
2024
Volume 170, Issue 10, 2024
- Reviews
-
-
-
The current riboswitch landscape in Clostridioides difficile
More LessRiboswitches are 5′ RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
-
-
-
-
Understanding the clinical and environmental drivers of antifungal resistance in the One Health context
More LessAntifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.
-
- Antimicrobials and AMR
-
-
-
Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection
More LessThe gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
-
-
-
-
Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria
More LessThe Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
-
-
-
Investigating trends in antibiotic resistance of Escherichia coli isolated from clinical urine specimens in the Orkney Islands
More LessUrinary tract infections (UTIs) are extremely common, affecting people of all ages and health statuses. Although UTIs do not usually cause severe illness, in some cases they can lead to more serious complications, especially if their initial treatment is ineffective due to antimicrobial resistance (AMR). AMR is an increasing issue, exacerbated by misdiagnosis and inappropriate prescribing of antibiotics, thus facilitating further resistance. The aim of this study was to investigate the rates of AMR in Escherichia coli isolated from clinical urine specimens tested at the Balfour Hospital, Orkney, and determine trends related to patient risk factors. Antibiotic susceptibilities were tested for 100 isolates of uropathogenic E. coli using the VITEK 2 Compact (bioMérieux), and data were analysed using percentage resistance rates. Resistance rates were compared by patient sex, age and source (hospital versus community). The findings showed higher AMR in males compared with females, particularly for trimethoprim (TMP), with 52% in males and only 12% in females. AMR tended to be higher in E. coli isolated from hospital inpatients than from community specimens, except for amoxicillin (AMX) and co-amoxiclav. Finally, the study found that AMR of E. coli isolates was greater in patients aged over 50 than 18–50 years old, particularly for AMX and TMP. The highest resistance rates across all patient demographics were for AMX, implying that the use of this antibiotic for the treatment of E. coli UTIs is not appropriate.
-
- Microbial Physiology, Biochemistry and Metabolism (formerly Physiology and Metabolism)
-
-
-
Cryo-electron microscopy structure of the di-domain core of Mycobacterium tuberculosis polyketide synthase 13, essential for mycobacterial mycolic acid synthesis
More LessMycobacteria are known for their complex cell wall, which comprises layers of peptidoglycan, polysaccharides and unusual fatty acids known as mycolic acids that form their unique outer membrane. Polyketide synthase 13 (Pks13) of Mycobacterium tuberculosis, the bacterial organism causing tuberculosis, catalyses the last step of mycolic acid synthesis prior to export to and assembly in the cell wall. Due to its essentiality, Pks13 is a target for several novel anti-tubercular inhibitors, but its 3D structure and catalytic reaction mechanism remain to be fully elucidated. Here, we report the molecular structure of the catalytic core domains of M. tuberculosis Pks13 (Mt-Pks13), determined by transmission cryo-electron microscopy (cryoEM) to a resolution of 3.4 Å. We observed a homodimeric assembly comprising the ketoacyl synthase (KS) domain at the centre, mediating dimerization, and the acyltransferase (AT) domains protruding in opposite directions from the central KS domain dimer. In addition to the KS–AT di-domains, the cryoEM map includes features not covered by the di-domain structural model that we predicted to contain a dimeric domain similar to dehydratases, yet likely lacking catalytic function. Analytical ultracentrifugation data indicate a pH-dependent equilibrium between monomeric and dimeric assembly states, while comparison with the previously determined structures of M. smegmatis Pks13 indicates architectural flexibility. Combining the experimentally determined structure with modelling in AlphaFold2 suggests a structural scaffold with a relatively stable dimeric core, which combines with considerable conformational flexibility to facilitate the successive steps of the Claisen-type condensation reaction catalysed by Pks13.
-
-
-
-
Biotin concentration affects anaplerotic reactions functioning in glutamic acid production in Corynebacterium glutamicum
More LessThe study investigates the effect of biotin concentration on the role of anaplerotic reactions catalysed by pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC) in glutamic acid production by Corynebacterium glutamicum. C. glutamicum requires biotin for its growth, and its glutamic acid production can be induced by the addition of Tween 40 or penicillin or by biotin limitation. The biotin enzyme PC and the non-biotin enzyme PEPC catalyse two anaplerotic reactions to supply oxaloacetic acid to the TCA cycle in C. glutamicum. Therefore, they are crucial for glutamic acid production in this bacterium. In this study, we investigated the contribution of each anaplerotic reaction to Tween 40- and penicillin-induced glutamic acid production using disruptants of PEPC and PC. In the presence of 20 µg l–1 biotin, which is sufficient for growth, the PEPC-catalysed anaplerotic reaction mainly contributed to Tween 40- and penicillin-induced glutamic acid production. However, when increasing biotin concentration 10-fold (i.e. 200 µg l–1), both PC- and PEPC-catalysed reactions could function in glutamic acid production. Western blotting revealed that the amount of biotin-bound PC was reduced by the addition of Tween 40 and penicillin in the presence of 20 µg l–1. However, these induction treatments did not change the amount of biotin-bound PC in the presence of 200 µg l–1 biotin. These results indicate that both anaplerotic reactions are functional during glutamic acid production in C. glutamicum and that biotin concentration mainly affects which anaplerotic reactions function during glutamic acid production.
-
- Microbial Virulence and Pathogenesis
-
-
-
Outer membrane barrier impairment by envC deletion reduces gut colonization of Crohn’s disease pathobiont Escherichia coli
More LessAdherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn’s disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month