- Volume 167, Issue 4, 2021
Volume 167, Issue 4, 2021
- Editorials
-
- Reviews
-
-
-
From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis
More LessMycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
-
-
-
-
Bacteria-induced mineral precipitation: a mechanistic review
More LessMicro-organisms contribute to Earth’s mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.
-
- Microbe Profiles
-
-
-
Microbe Profile: Bdellovibrio bacteriovorus: a specialized bacterial predator of bacteria
More LessBdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.
-
-
- Biotechnology and Synthetic Biology
-
-
-
Isolation and characterization of bacteria from activated sludge capable of degrading 17α-ethinylestradiol, a contaminant of high environmental concern
More LessThe compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l−1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides . The results of biodegradation assays showed that Acinetobacter bouvetii , Acinetobacter kookii , Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l−1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.
-
-
- Microbial Cell Surfaces
-
-
-
Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing
More LessMembrane vesicles (MVs) are membrane-bound spherical nanostructures that prevail in all three domains of life. In Gram-negative bacteria, MVs are thought to be produced through blebbing of the outer membrane and are often referred to as outer membrane vesicles (OMVs). We have recently described another mechanism of MV formation in Pseudomonas aeruginosa that involves explosive cell-lysis events, which shatters cellular membranes into fragments that rapidly anneal into MVs. Interestingly, MVs are often observed within preparations of lytic bacteriophage, however the source of these MVs and their association with bacteriophage infection has not been explored. In this study we aimed to determine if MV formation is associated with lytic bacteriophage infection. Live super-resolution microscopy demonstrated that explosive cell lysis of Escherichia coli cells infected with either bacteriophage T4 or T7, resulted in the formation of MVs derived from shattered membrane fragments. Infection by either bacteriophage was also associated with the formation of membrane blebs on intact bacteria. TEM revealed multiple classes of MVs within phage lysates, consistent with multiple mechanisms of MV formation. These findings suggest that bacteriophage infection may be a major contributor to the abundance of bacterial MVs in nature.
-
-
- Microbial Interactions and Communities
-
-
-
Haem toxicity provides a competitive advantage to the clinically relevant Staphylococcus aureus small colony variant phenotype
Microorganisms encounter toxicities inside the host. Many pathogens exist as subpopulations to maximize survivability. Subpopulations of Staphylococcus aureus include antibiotic-tolerant small colony variants (SCVs). These mutants often emerge following antibiotic treatment but can be present in infections prior to antibiotic exposure. We hypothesize that haem toxicity in the host selects for respiration-deficient S. aureus SCVs in the absence of antibiotics. We demonstrate that some but not all respiration-deficient SCV phenotypes are more protective than the haem detoxification system against transient haem exposure, indicating that haem toxicity in the host may contribute to the dominance of menaquinone-deficient and haem-deficient SCVs prior to antibiotic treatment.
-
-
-
-
The impact of intra-specific diversity in the rhizobia-legume symbiosis
More LessRhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants. However in nature individual plants are infected by a high diversity of rhizobia symbionts. How this diversity affects productivity within the symbiosis is unclear. Here, we use a powerful statistical approach to assess the impact of diversity within the Rhizobium leguminosarum - clover symbiosis using a biodiversity-ecosystem function framework. Statistically, we found no significant impact of rhizobium diversity. However this relationship was weakly positive - rather than negative - indicating that there is no significant cost to increasing inoculant diversity. Productivity was influenced by the identity of the strains within an inoculant; strains with the highest individual performance showed a significant positive contribution within mixed inoculants. Overall, inoculant effectiveness was best predicted by the individual performance of the best inoculant member, and only weakly predicted by the worst performing member. Collectively, our data suggest that the Rhizobium leguminosarum - clover symbiosis displays a weak diversity-function relationship, but that inoculant performance can be improved through the inclusion of high performing strains. Given the wide environmental dependence of rhizobial inoculant quality, multi-strain inoculants could be highly successful as they increase the likelihood of including a strain well adapted to local conditions across different environments.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)