- Volume 166, Issue 5, 2020
Volume 166, Issue 5, 2020
- Editorial
-
- Microbe Profile
-
-
-
Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse
More LessBacillus subtilis is the best studied model organism of the Gram-positive lineage. It is naturally transformable and has an extremely powerful genetic toolbox. It is fast growing and easy to cultivate. It is an important industrial organism, being proficient at secreting proteins and making small fine chemicals, as well as acting as a plant growth promoter. It has been an important model system for studying biofilms. Finally, it makes endospores, which have provided an exceptionally fruitful system for studying various central problems of cellular development, including the generation of asymmetry, cell fate determination and morphogenesis.
-
-
- Host-microbe Interaction
-
-
-
The need to unravel the twisted nature of the Borrelia burgdorferi sensu lato complex across Europe
More LessLyme borreliosis is a vector-borne infection caused by bacteria under the Borrelia burgdorferi sensu lato complex, both in Europe and North America. Differential gene expression at different times throughout its infectious cycle allows the spirochete to survive very diverse environments within different mammalian hosts as well as the tick vector. To date, the vast majority of data about spirochetal proteins and their functions are from genetic studies carried out on North American strains of a single species, i.e. B. burgdorferi sensu stricto. The whole-genome sequences recently obtained for several European species/strains make it feasible to adapt and use genetic techniques to study inherent differences between them. This review highlights the crucial need to undertake independent studies of genospecies within Europe, given their varying genetic content and pathogenic potential, and differences in clinical manifestation.
-
-
-
-
Characterization of the hemolytic activity of Riemerella anatipestifer
Riemerella anatipestifer infection causes serious economic losses in the duck industry worldwide. Acute septicemia and high blood bacterial loading in R. anatipestifer infected ducks indicate that R. anatipestifer may be able to obtain iron and other nutrients by lysing duck erythrocytes to support its rapid growth and proliferation in the blood. However, so far, little is known about the hemolytic activity of R. anatipestifer to duck erythrocytes. In this study, 29 of 52 R . anatipestifer strains showed hemolytic activity on duck blood agar, whereas all the tested dba+ (with hemolytic activity on duck blood agar) and dba− strains created pores in the duck red blood cells, with 4.35–9.03% hemolytic activity in a liquid hemolysis assay after incubation for 24 h. The concentrated culture supernatants of all the tested R. anatipestifer strains and the extracted outer membrane proteins (OMPs) from dba+ R. anatipestifer strains showed hemolytic activity on duck blood agar. These results, together with the median lethal dose (LD50) of some dba+ and dba- R. anatipestifer strains in ducklings, suggested that there was no direct relationship between the hemolytic capacity of R. anatipestifer on duck blood agar and its virulence.
-
-
-
Microbiome diversity and composition varies across body areas in a freshwater turtle
More LessThere is increasing recognition that microbiomes are important for host health and ecology, and understanding host microbiomes is important for planning appropriate conservation strategies. However, microbiome data are lacking for many taxa, including turtles. To further our understanding of the interactions between aquatic microbiomes and their hosts, we used next generation sequencing technology to examine the microbiomes of the Krefft’s river turtle (Emydura macquarii krefftii). We examined the microbiomes of the buccal (oral) cavity, skin on the head, parts of the shell with macroalgae and parts of the shell without macroalgae. Bacteria in the phyla Proteobacteria and Bacteroidetes were the most common in most samples (particularly buccal samples), but Cyanobacteria , Deinococcus-thermus and Chloroflexi were also common (particularly in external microbiomes). We found significant differences in community composition among each body area, as well as significant differences among individuals. The buccal cavity had lower bacterial richness and evenness than any of the external microbiomes, and it had many amplicon sequence variants (ASVs) with a low relative abundance compared to other body areas. Nevertheless, the buccal cavity also had the most unique ASVs. Parts of the shell with and without algae also had different microbiomes, with particularly obvious differences in the relative abundances of the families Methylomonaceae, Saprospiraceae and Nostocaceae . This study provides novel, baseline information about the external microbiomes of turtles and is a first step in understanding their ecological roles.
-
- Genomics and Systems Biology
-
-
-
Genomic diversity of Salmonella enterica isolated from papaya samples collected during multiple outbreaks in 2017
More LessIn 2017, the US Food and Drug Administration investigated the sources of multiple outbreaks of salmonellosis. Epidemiologic and traceback investigations identified Maradol papayas as the suspect vehicles. During the investigations, the genomes of 55 Salmonella enterica that were isolated from papaya samples were sequenced. Serovar assignments and phylogenetic analysis placed the 55 isolates into ten distinct groups, each representing a different serovar. Within-serovar SNP differences are generally between 0 and 20 SNPs, while the median between-serovar distance is 51 812 SNPs. We observed two groups with SNP distances between 21 and 100 SNPs. These relatively large within-serovar SNP distances may indicate that the isolates represent either diverse populations or multiple, genetically distinct subpopulations. Further inspection of these cases with traceback evidence allowed us to identify an 11th population. We observed that high levels of genomic diversity from individual firms is possible, with one firm yielding five of the ten serovars. Also, high levels of diversity are possible within small geographic regions, as five of the serovars were isolated from papayas that originated from farms located in Armería and Tecomán, Colima. In addition, we identified AMR genes that are present in three of the serovars studied here (aph(3’)-lb, aph(6)-ld, tet(C), fosA7, and qnrB19) and we detected the presence of the plasmid IncHI2A among S. Urbana isolates.
-
-
- Physiology and Metabolism
-
-
-
Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation
More LessThe ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
-
-
-
-
A genuine mycobacterial thermophile: Mycobacterium hassiacum growth, survival and GpgS stability at near-pasteurization temperatures
Mycobacterium hassiacum is so far the most thermophilic among mycobacteria as it grows optimally at 50 °C and up to 65 °C in a glycerol-based medium, as verified in this study. Since this and other nontuberculous mycobacteria (NTM) thrive in diverse natural and artificial environments, from where they may access and infect humans, we deemed essential to probe M. hassiacum resistance to heat, a strategy routinely used to control microbial growth in water-supply systems, as well as in the food and drink industries. In addition to possibly being a threat in its own right in rare occasions, M. hassiacum is also a good surrogate for studying other NTM species more often associated with opportunistic infection, namely Mycobacterium avium and Mycobacterium abscessus as well as their strictly pathogenic counterparts Mycobacterium tuberculosis and Mycobacterium leprae . In this regard, this thermophilic species is likely to be useful as a source of stable proteins that may provide more detailed structures of potential drug targets. Here, we investigate M. hassiacum growth at near-pasteurization temperatures and at different pHs and also characterize its thermostable glucosyl-3-phosphoglycerate synthase (GpgS), an enzyme considered essential for M. tuberculosis growth and associated with both nitrogen starvation and thermal stress in different NTM species.
-
-
-
Genetic regulation, biochemical properties and physiological importance of arginase from Sinorhizobium meliloti
In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)