-
Volume 166,
Issue 11,
2020
Volume 166, Issue 11, 2020

- Editorial
-
- Review
-
-
-
Expansin-related proteins: biology, microbe–plant interactions and associated plant-defense responses
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
-
-
- Biotechnology
-
-
-
A highly sensitive biosensor with a single-copy evolved sensing cassette for chlorpyrifos pesticide detection
More LessA formylglycine-generating enzyme (FGE)–sulfatase-based whole-cell biosensor was genetically improved into a single-copy system by integrating the Sinorhizobium meliloti transcriptional activator ChpR and the chpA promoter–FGE–sulfatase fusion into the Escherichia coli chromosome. The sensitivity was further enhanced through a random mutagenesis of the chpR. The new integrated biosensor offered both a lower detection limit [5 nM chlorpyrifos (CPF)] and fluorescence background. The ready-to-use kit was developed using silica gel for on-field detection. The biosensor kit was stable for 20 days when stored at 4 °C. Moreover, a 1-(1-naphthylmethyl)-piperazine (NMP) efflux pump inhibitor can improve the sensitivity by 57 %.
-
-
-
-
Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance
Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms Corynebacterium glutamicum and Pseudomonas putida are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for C. glutamicum and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.
-
- Environmental Biology
-
-
-
Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis
More LessVibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro. We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli . Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.
-
-
- Genomics and Systems Biology
-
-
-
Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla
More LessHomologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli ; while bacteria in other phyla, like the Firmicute Bacillus subtilis , use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
-
-
- Host-microbe Interaction
-
-
-
Cytotoxicity of the 42 kDa SMase C sphingomyelinase secreted by Leptospira interrogans serovar Pomona on Vero cells
More LessSphingomyelinases produced by the pathogenic members of the genus Leptospira are implicated in the haemorrhagic manifestations seen in the severe form of leptospirosis. With multiple sphingomyelinase genes present in the genome of pathogenic Leptospira , much remains to be understood about these molecules. They include factors regulating their expression, post-translational modifications, and release of the biologically active forms of these molecules. In this study, serovar Pomona was chosen as it is reported to express high levels of sphingomyelinase that explained the haemolytic activity seen in experimental animals infected with this pathogen. Here, we demonstrate the cytotoxicity of a 42 kDa sphingomyelinase secreted by Leptospira interrogans serovar Pomona strain Pomona upon infecting Vero cells. This sphingomyelinase detected using specific anti-sphingomyelinase antibodies, exhibited haemolytic and sphingomyelinase activities that caused host-cell damage evident from the confocal images and scanning electron micrographs. The implications of these findings and the detection of a 42 kDa sphingomyelinase in the urine of human patients with leptospirosis in our earlier study is discussed with an emphasis on the potential of these sphingomyelinases as candidate markers for the early diagnosis of leptospirosis.
-
-
-
-
R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace’s medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
-
-
-
The general stress response of Staphylococcus aureus promotes tolerance of antibiotics and survival in whole human blood
More LessStaphylococcus aureus is a frequent cause of invasive human infections such as bacteraemia and infective endocarditis. These infections frequently relapse or become chronic, suggesting that the pathogen has mechanisms to tolerate the twin threats of therapeutic antibiotics and host immunity. The general stress response of S. aureus is regulated by the alternative sigma factor B (σB) and provides protection from multiple stresses including oxidative, acidic and heat. σB also contributes to virulence, intracellular persistence and chronic infection. However, the protective effect of σB on bacterial survival during exposure to antibiotics or host immune defences is poorly characterized. We found that σB promotes the survival of S. aureus exposed to the antibiotics gentamicin, ciprofloxacin, vancomycin and daptomycin, but not oxacillin or clindamycin. We also found that σB promoted staphylococcal survival in whole human blood, most likely via its contribution to oxidative stress resistance. Therefore, we conclude that the general stress response of S. aureus may contribute to the development of chronic infection by conferring tolerance to both antibiotics and host immune defences.
-
- Physiology and Metabolism
-
-
-
MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM
More LessAntibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa , efflux pumps belonging to the resistance–nodulation–division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY–OprA and MexXY–OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY–OprA and MexXY–OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY–OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
