-
Volume 165,
Issue 2,
2019
Volume 165, Issue 2, 2019
-
-
Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem?
More LessThe strength, flexibility and light weight of traditional oil-derived plastics make them ideal materials for a large number of applications, including packaging, medical devices, building, transportation, etc. However, the majority of produced plastics are single-use plastics, which, coupled with a throw-away culture, leads to the accumulation of plastic waste and pollution, as well as the loss of a valuable resource. In this review we discuss the advances and possibilities in the biotransformation and biodegradation of oil-based plastics. We review bio-based and biodegradable polymers and highlight the importance of end-of-life management of biodegradables. Finally, we discuss the role of a circular economy in reducing plastic waste pollution.
-
- Editorial
-
- Obituary
-
- Review
-
-
-
Social behaviour and making attachments: a report from the fifth ‘Young Microbiologists Symposium on Microbe Signalling, Organisation and Pathogenesis’
More LessThe fifth Young Microbiologists Symposium was held in Queen’s University Belfast, Northern Ireland, in late August 2018. The symposium, focused on 'Microbe signalling, organization and pathogenesis', attracted 121 microbiologists from 15 countries. The meeting allowed junior scientists to present their work to a broad audience, and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society and the Microbiology Society. Sessions covered recent advances in areas of microbiology including gene regulation and signalling, secretion and transport across membranes, infection and immunity, and antibiotics and resistance mechanisms. In this Meeting Report, we highlight some of the most significant advances and exciting developments communicated during talks and poster presentations.
-
-
- Cell Biology
-
-
-
Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens
A core regulatory pathway that directs developmental transitions and cellular asymmetries in Agrobacterium tumefaciens involves two overlapping, integrated phosphorelays. One of these phosphorelays putatively includes four histidine sensor kinase homologues, DivJ, PleC, PdhS1 and PdhS2, and two response regulators, DivK and PleD. In several different alphaproteobacteria, this pathway influences a conserved downstream phosphorelay that ultimately controls the phosphorylation state of the CtrA master response regulator. The PdhS2 sensor kinase reciprocally regulates biofilm formation and swimming motility. In the current study, the mechanisms by which the A. tumefaciens sensor kinase PdhS2 directs this regulation are delineated. PdhS2 lacking a key residue implicated in phosphatase activity is markedly deficient in proper control of attachment and motility phenotypes, whereas a kinase-deficient PdhS2 mutant is only modestly affected. A genetic interaction between DivK and PdhS2 is revealed, unmasking one of several connections between PdhS2-dependent phenotypes and transcriptional control by CtrA. Epistasis experiments suggest that PdhS2 may function independently of the CckA sensor kinase, the cognate sensor kinase for CtrA, which is inhibited by DivK. Global expression analysis of the pdhS2 mutant reveals a restricted regulon, most likely functioning through CtrA to separately control motility and regulate the levels of the intracellular signal cyclic diguanylate monophosphate (cdGMP), thereby affecting the production of adhesive polysaccharides and attachment. We hypothesize that in A. tumefaciens the CtrA regulatory circuit has expanded to include additional inputs through the addition of PdhS-type sensor kinases, likely fine-tuning the response of this organism to the soil microenvironment.
-
-
- Host-Microbe Interaction
-
-
-
The Streptococcos suis sortases SrtB and SrtF are essential for disease in pigs
The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host–pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.
-
-
-
-
Symbiont evolution during the free-living phase can improve host colonization
More LessFor micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
-
-
-
Comparative analysis of immunological properties of S-layer proteins isolated from Lactobacillus strains
More LessPrevious studies have suggested that some Lactobacillus S-layer proteins could modulate immune responses. Primary structures of the S-layer proteins are variable, and their immunological differences are poorly understood. In this study, we evaluated the immunological properties of eight distinct S-layer proteins from different Lactobacillus species. We found that removal of the S-layer proteins from the cell surface reduced the immunological activities of Lactobacillus cells in THP-1 cells. Furthermore, the purified S-layer proteins induced the production of IL-12 p40, although their immunological activities varied between the different S-layer proteins. The production of IL-12 p40 was notably induced by the S-layer protein SLP(aly) from Lactobacillus amylolyticus NRIC 0558T. Multiple sequence alignment revealed that the percent identity of the S-layer proteins of the eight strains vary from 10 to 90 %. In particular, N-terminal regions showed high levels of diversity. To obtain more information about their structure and the immunogenicity, truncated and chimeric S-layer proteins were constructed in recombinant E. coli. Profiling of cytokine production in THP-1 cells by truncated and chimeric S-layer proteins suggested that the intact conformation of the N-terminal region of SLP(aly) contributes to high immunogenicity.
-
- Physiology and Metabolism
-
-
-
Inactivation of the exogenous fatty acid utilization pathway leads to increased resistance to unsaturated fatty acids in Staphylococcus aureus
More LessThe human pathogen Staphylococcus aureus produces saturated fatty acids, but can incorporate both exogenous saturated and unsaturated fatty acids into its lipid membrane. S. aureus encounters unsaturated fatty acids in the host skin where they serve as an innate immune defence due to their toxicity. Previously, we identified a fatty acid kinase in S. aureus that is necessary for the utilization of exogenous fatty acids. The goal of this study was to determine the effects of fatty acids on mutants deficient in the exogenous fatty acid utilization machinery. We have demonstrated that mutants lacking a functional fatty acid kinase (fakA) or both fatty acid carrier proteins (fakB1 fakB2) are more resistant to unsaturated fatty acids. Previous studies suggested a role for ammonia-producing enzymes in resistance to unsaturated fatty acids, but these enzymes do not contribute to the resistance of the fakA mutant, despite increased urease transcription and protein activity in the mutant. Additionally, while pigment is altered in mutants unable to use exogenous fatty acids, staphyloxanthin does not contribute to fatty acid resistance of an fakA mutant. Because exposure to unsaturated fatty acids probably initiates a stress response, we investigated the role of the alternative sigma factor σB and determined if it is necessary for the fatty acid resistance observed in the fakA mutant. Collectively, this study demonstrates that the inability to incorporate unsaturated fatty acids leads to increased resistance to those fatty acids, and that resistance requires a σB stress response.
-
-
-
-
An operon encoding enzymes for synthesis of a putative extracellular carbohydrate attenuates acquired vancomycin resistance in Streptomyces coelicolor
More LessActinomycete bacteria use polyprenol phosphate mannose as a lipid-linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. Strains of Streptomyces coelicolor with mutations in the gene ppm1, encoding polyprenol phosphate mannose synthase, and in pmt, encoding a protein O-mannosyltransferase, are resistant to phage ϕC31 and have greatly increased susceptibility to some antibiotics, including vancomycin. In this work, second-site suppressors of the vancomycin susceptibility were isolated. The suppressor strains fell into two groups. Group 1 strains had increased resistance to vancomycin, teicoplanin and β-lactams, and had mutations in the two-component sensor regulator system encoded by vanSR, leading to upegulation of the vanSRJKHAX cluster. Group 2 strains only had increased resistance to vancomycin and these mostly had mutations in sco2592 or sco2593, genes that are derepressed in the presence of phosphate and are likely to be required for the synthesis of a phosphate-containing extracellular polymer. In some suppressor strains the increased resistance was only observed in media with limited phosphate (mimicking the phenotype of wild-type S. coelicolor ), but two strains, DT3017_R21 (ppm1-vanR -) and DT3017_R15 (ppm1- sco2593 -), retained resistance on media with high phosphate content. These results support the view that vancomycin resistance in S. coelicolor is a trade-off between mechanisms that confer resistance and at least one that interferes with resistance mediated through the sco2594-sco2593-sco2592 operon.
-
-
-
Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin
Helicobacter pylori lacks the genes involved in the de novo synthesis of thiamin, and is therefore a thiamin auxotroph. The PnuT transporter, a member of the Pnu transporter family, mediates the uptake of thiamin across the membrane. In the genome of H. pylori , the pnuT gene is clustered with the thiamin pyrophosphokinase gene thi80. In this study, we found that [3H]thiamin is incorporated into the H. pylori SS1 strain via facilitated diffusion with a K m value of 28 µM. The incorporation of radioactive thiamin was inhibited to some extent by 2-methyl-4-amino-5-hydroxymethylpyrimidine or pyrithiamine, but was largely unaffected by thiamin phosphate or thiamin pyrophosphate. RT-PCR analysis demonstrated that the pnuT and thi80 genes are cotranscribed as a single transcript. The estimated K m value for thiamin in the thiamin pyrophosphokinase activity exerted by the recombinant Thi80 protein was 0.40 µM, which is much lower than the K m value of thiamin transport in H. pylori cells. These findings suggested that the incorporated thiamin from the environment is efficiently trapped by pyrophosphorylation to make the transport directional. In addition, the thiamin transport activity in the pnuT-deficient H. pylori strain was less than 20 % of that in the wild-type strain at extracellular thiamin concentration of 1 µM, but the incorporated scintillation signals of the pnuT-deficient strain with 100 nM [3H]thiamin were nearly at the background level. We also found that the pnuT-deficient strain required 100-times more thiamin to achieve growth equal to that of the wild-type. These findings reflect the presence of multiple routes for entry of thiamin into H. pylori , and PnuT is likely responsible for the high-affinity thiamin transport and serves as a target for antimicrobial agents against H. pylori .
-
- Regulation
-
-
-
Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672
Streptomyces ghanaensis ATCC14672 is remarkable for its production of phosphoglycolipid compounds, moenomycins, which serve as a blueprint for the development of a novel class of antibiotics based on inhibition of peptidoglycan glycosyltransferases. Here we employed mariner transposon (Tn) mutagenesis to find new regulatory genes essential for moenomycin production. We generated a library of 3000 mutants which were screened for altered antibiotic activity. Our focus centred on a single mutant, HIM5, which accumulated lower amounts of moenomycin and was impaired in morphogenesis as compared to the parental strain. HIM5 carried the Tn insertion within gene ssfg_01967 for putative tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase, or MiaB, and led to a reduced level of thiomethylation at position 37 in the anticodon of S. ghanaensis transfer ribonucleic acid (tRNA). It is likely that the mutant phenotype of HIM5 stems from the way in which ssfg_01967::Tn influences translation of the rare leucine codon UUA in several genes for moenomycin production and life cycle progression in S. ghanaensis . This is the first report showing that quantitative changes in tRNA modification status in Streptomyces have physiological consequences.
-
-
- Biotechnology
-
-
-
Multiplex PCR to detect pAmpC β-lactamases among enterobacteriaceae at a tertiary care laboratory in Mumbai, India
More LessDrug-resistance due to AmpC β-lactamases represents a growing problem worldwide. In this study, a previously collected sample of 108 cefoxitin-resistant clinical isolates was assessed for AmpC β-lactamase production through routine phenotypic testing and double-disc cefoxitin/cloxcallin (DD-CC), cefoxitin/phenylboronic acid (CDT-PBA) and AmpC disc tests. The same isolates were characterized by a novel multiplex polymerase chain reaction molecular assay to detect the presence of blaACT , blaDHA , blaCIT , blaFOX , blaMIR and blaMOX. By phenotypic analysis, 56%, 55% and 48 % were detected as being AmpC β-lactamase producers by the CDT-PBA, DD-CC and AmpC disc tests, respectively. By molecular analysis, 57 % were determined to be AmpC β-lactamase producers, including 34 % blaFOX , 8 % blaCIT and 1.6 % blaDHA as mono-AmpC producers. The production of multiple AmpC molecular types was common, including 30 % with both blaCIT+FOX and 1.6 % each of blaCIT+DHA , blaACT+MIR , blaACT+FOX , blaACT+DHA and blaMIR+FOX . Molecular characterization of AmpC would help detect the prevalence of AmpC β-lactamase producers, facilitate proper patient management and implement infection control practices.
-
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
