-
Volume 165,
Issue 12,
2019
Volume 165, Issue 12, 2019

- Editorial
-
- Review
-
-
-
Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns
More LessThe rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of ‘the uncultured microbial majority’ has now revealed enormous taxonomic diversity among ‘dark’ and ‘rare’ actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify ‘gifted’ organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
-
-
-
-
Parallels among natural and synthetically modified quorum-quenching strategies as convoy to future therapy
More LessQuorum sensing (QS) refers to chemical signalling between micro-organisms and defines a social concord among them. Once a threshold of signal is accumulated, certain virulent traits are regulated within bacteria in response to the surrounding environment. These virulence traits are known to contribute in the pathogenicity of bacterial diseases. To prevent the activation of virulence factors, QS is inhibited in different ways through a strategy known as quorum quenching. Various types of quorum-quenching strategies have already been used and characterized, as discussed in this review. The phenomenon of quorum quenching has long been considered as an alternative therapy to circumvent the ill-effects of the overuse of antibiotics. Considering the need to compare and evaluate various strategies, selected quorum-quenching paradigms are detailed along with their pros and cons in this review. A rationale has been drawn between naturally evolved quorum-quenching strategies and synthetically modified approaches adopted to abrogate QS.
-
- Biotechnology
-
-
-
Shotgun proteomic analysis of nanoparticle-synthesizing Desulfovibrio alaskensis in response to platinum and palladium
More LessPlatinum and palladium are much sought-after metals of critical global importance in terms of abundance and availability. At the nano-scale these metals are of even higher value due to their catalytic abilities for industrial applications. Desulfovibrio alaskensis is able to capture ionic forms of both of these metals, reduce them and synthesize elemental nanoparticles. Despite this ability, very little is known about the biological pathways involved in the formation of these nanoparticles. Proteomic analysis of D. alaskensis in response to platinum and palladium has highlighted those proteins involved in both the reductive pathways and the wider stress-response system. A core set of 13 proteins was found in both treatments and consisted of proteins involved in metal transport and reduction. There were also seven proteins that were specific to either platinum or palladium. Overexpression of one of these platinum-specific genes, a NiFe hydrogenase small subunit (Dde_2137), resulted in the formation of larger nanoparticles. This study improves our understanding of the pathways involved in the metal resistance mechanism of Desulfovibrio and is informative regarding how we can tailor the bacterium for nanoparticle production, enhancing its application as a bioremediation tool and as a way to capture contaminant metals from the environment.
-
-
- Cell Biology
-
-
-
Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress
More LessExtracellular vesicle release is a wide-spread and broadly important phenomenon in bacteria. However, not much is known about the mechanism of vesicle release in Gram-positive bacteria. Observations of polarly growing Streptomyces venezuelae by live cell time-lapse imaging reveal release of extracellular membrane vesicles from tips of vegetative hyphae. Vesicle extrusion is associated with spontaneous growth arrests, but often the apical cell survives and can re-initiate growth by forming new hyphal branches. Treatment with vancomycin to block peptidoglycan synthesis leads to a high frequency of lysis and vesicle extrusion, where some hyphae can survive growth arrest and vesicle extrusion and reinitiate growth after antibiotic is washed away. The extruded vesicles do not contain nucleoids and do not appear able to proliferate. Vesicle extrusion is not affected by the Ser/Thr protein kinase AfsK that phosphorylates the DivIVA at hyphal tips, nor is it affected by the intermediate filament-like protein FilP that localizes in gradient-like structures at hyphal tips. Notably, hyphae of a scy mutant, which has an unstable apical polarisome structure, are prone to spontaneous growth arrests and vesicle extrusion even in the absence of antibiotic treatment, supporting the idea that the nature of the growth zone at the hyphal tips is important for this route of extracellular vesicle formation. We speculate that the propensity for vesicle extrusion is a direct consequence of how polar growth is organized at hyphal tips in Streptomyces , with the cell-wall sacculus being weak and susceptible to bursting at the apical zones of growth where peptidoglycan synthesis is primarily taking place.
-
-
- Environmental Biology
-
-
-
Prevalence and molecular characterization of non-tuberculous mycobacteria in hospital soil and dust of a developing country, Iran
More LessThe presence and diversity of mycobacteria that are capable of survival in a harsh and adverse condition, such as hospital environments, have not been comprehensively studied. This study aimed to assess the frequency and diversity of mycobacteria in hospital soil and dust of a developing country using a combination of molecular and conventional methods. A total of 318 hospital dust and soil samples collected from 38 hospitals were analysed using standard protocols for characterization of mycobacteria. The conventional tests were used for preliminary identification and Runyon’s classification, the PCR amplification of the hsp65 gene and sequence analyses of 16SrRNA were applied for genus and species identification. In total, 28 samples (8.8 %) were positive for mycobacteria. The isolates included 33 mycobacteria species including 19 rapidly growing and 14 slowly growing organisms. The most prevalent species were M. setense and M. lentiflavum, five isolates (15.1 %) each, M. fortuitum, four isolates (12.12 %) and M. kumamotonense and M. massiliense/abscessus complex three isolates (9.1 %) each, M. arupense and M. frederiksbergense, two isolates (6 %) each. The remaining isolates consisted the single strains of eight various mycobacterium species, the results of our study revealed that soil and dust in hospitals can be the reservoir of mycobacteria. This reaffirms the fact that these organisms due to intrinsic resistance can persist in hospitals and create a threat to patient’s health, in particular to those who suffer from weakness of immunity.
-
-
-
-
Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100
Defining phenotypic and associated genotypic variation among Bdellovibrio may further our understanding of how this genus attacks and kills different Gram-negative bacteria. We isolated Bdellovibrio sp. NC01 from soil. Analysis of 16S rRNA gene sequences and average amino acid identity showed that NC01 belongs to a different species than the type species bacteriovorus. By clustering amino acid sequences from completely sequenced Bdellovibrio and comparing the resulting orthologue groups to a previously published analysis, we defined a ‘core genome’ of 778 protein-coding genes and identified four protein-coding genes that appeared to be missing only in NC01. To determine how horizontal gene transfer (HGT) may have impacted NC01 genome evolution, we performed genome-wide comparisons of Bdellovibrio nucleotide sequences, which indicated that eight NC01 genomic regions were likely acquired by HGT. To investigate how genome variation may impact predation, we compared protein-coding gene content between NC01 and the B. bacteriovorus type strain HD100, focusing on genes implicated as important in successful killing of prey. Of these, NC01 is missing ten genes that may play roles in lytic activity during predation. Compared to HD100, NC01 kills fewer tested prey strains and kills Escherichia coli ML35 less efficiently. NC01 causes a smaller log reduction in ML35, after which the prey population recovers and the NC01 population decreases. In addition, NC01 forms turbid plaques on lawns of E. coli ML35, in contrast to clear plaques formed by HD100. Linking phenotypic variation in interactions between Bdellovibrio and Gram-negative bacteria with underlying Bdellovibrio genome variation is valuable for understanding the ecological significance of predatory bacteria and evaluating their effectiveness in clinical applications.
-
-
-
Phylogenetic characterization of the energy taxis receptor Aer in Pseudomonas and phenotypic characterization in Pseudomonas pseudoalcaligenes KF707
More LessChemotaxis allows bacteria to sense gradients in their environment and respond by directing their swimming. Aer is a receptor that, instead of responding to a specific chemoattractant, allows bacteria to sense cellular energy levels and move towards favourable environments. In Pseudomonas, the number of apparent Aer homologues differs between the only two species it has been characterized in, Pseudomonas aeruginosa and Pseudomonas putida . Here we combined bioinformatic approaches with deletional mutagenesis in Pseudomonas pseudoalcaligenes KF707 to further characterize Aer. It was determined that the number of Aer homologues varies between zero and four throughout the genus Pseudomonas , and they were phylogenetically classified into five subgroups. We also used sequence analysis to show that these homologous receptors differ in their HAMP signal transduction domains. Genetic analysis also indicated that some Aer homologues have likely been subject to horizontal transfer. P. pseudoalcaligenes KF707 was unique among strains for having three Aer homologues as well as the receptors CttP and McpB. Phenotypic characterization in this strain showed that the most prevalent homologue of Aer was key, but not essential, for energy taxis. This study demonstrates that energy taxis in Pseudomonas varies between species and provides a new naming convention and associated phylogenetic details for Aer chemoreceptors.
-
- Physiology and Metabolism
-
-
-
Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27
More LessBacteria affiliated with the phylum Gemmatimonadetes are found in high abundance in many terrestrial and aquatic environments, yet little is known about their metabolic capabilities. Difficulty in their cultivation has prompted interest in identifying better growth conditions for metabolic studies, especially related to their ability to reduce N2O, a potent greenhouse gas. T-27 Gemmatimonas aurantiaca is one of few cultivated strains of Gemmatimonadetes available for physiological studies. Our objective was to test this organism’s ability to use nitrite, nitrate, and N2O, and mineral forms of assimilable NH4 + at concentrations not typically used in tests for compound utilization. Cultures incubated under anaerobic conditions with nitrate, nitrite or N2O failed to grow or show depletion of these substrates. Nitrate and nitrite (1 mM) were not used even when cells were grown aerobically with the O2 allowed to deplete first. N2O reduction only commenced in the presence of O2 and continued to be depleted when refed to the culture under anaerobic, microaerobic and aerobic atmospheres. Carbon mineralization was coupled to the electron-accepting processes, with higher reducing equivalents needed for N2O utilization under aerobic atmospheres. N2O was reduced to N2 in the presence of 20% O2, however the rate of this reaction is reduced in the presence of high O2 concentration. This study demonstrated that G. aurantiaca T-27 possesses unique characteristics for assimilative and dissimilative N processes with new implications for cultivation strategies to better assess the metabolic abilities of Gemmatimonadetes.
-
-
-
-
Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella
More LessBacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron–sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron–sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron–sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.
-
- Regulation
-
-
-
Streptomycete origin of chromosomal replication with two putative unwinding elements
DNA replication is controlled mostly at the initiation step. In bacteria, replication of the chromosome starts at a single origin of replication called oriC. The initiator protein, DnaA, binds to specific sequences (DnaA boxes) within oriC and assembles into a filament that promotes DNA double helix opening within the DNA unwinding element (DUE). This process has been thoroughly examined in model bacteria, including Escherichia coli and Bacillus subtilis, but we have a relatively limited understanding of chromosomal replication initiation in other species. Here, we reveal new details of DNA replication initiation in Streptomyces , a group of Gram-positive soil bacteria that possesses a long linear (8–10 Mbps) and GC-rich chromosome with a centrally positioned oriC. We used comprehensive in silico, in vitro and in vivo analyses to better characterize the structure of Streptomyces oriC. We identified 14 DnaA-binding motifs and determined the consensus sequence of the DnaA box. Unexpectedly, our in silico analysis using the WebSIDD algorithm revealed the presence of two putative Streptomyces DUEs (DUE1 and DUE2) located very near one another toward the 5′ end of the oriC region. In vitro P1 nuclease assay revealed that DNA unwinding occurs at both of the proposed sites, but using an in vivo replication initiation point mapping, we were able to confirm only one of them (DUE2). The previously observed transcriptional activity of the Streptomyces oriC region may help explain the current results. We speculate that transcription itself could modulate oriC activity in Streptomyces by determining whether DNA unwinding occurs at DUE1 or DUE2.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
