-
Volume 158,
Issue 6,
2012
Volume 158, Issue 6, 2012
- Microbial Pathogenicity
-
-
A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague
The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.
-
A domino-like chlamydial attachment process: concurrent Parachlamydia acanthamoebae attachment to amoebae is required for several amoebal released molecules and serine protease activity
Parachlamydia acanthamoebae is an obligate intracellular bacterium that infects free-living amoebae (Acanthamoeba), and is a potential human pathogen associated with hospital-acquired pneumonia. The attachment mechanism of this bacteria to host cells is crucial in bacterial pathogenesis, yet remains undetermined. Hence, we obtained monoclonal antibodies (mAbs) specific to either P. acanthamoebae or amoebae in an attempt to elucidate the attachment mechanism involved. Hybridomas of 954 clones were assessed, and we found that four mAbs (mAb38, mAb300, mAb311, mAb562) that were reactive to the amoebae significantly inhibited bacterial attachment. All mAbs recognized amoebal released molecules, and mAb311 also recognized the amoebal surface. mAbs reacted with the bacteria not only within amoebae, but also when they were released from amoebae (except mAb311). Furthermore, a serine protease inhibitor had an inhibitory effect on the bacterial attachment to amoebae, although none of the mAbs had any synergistic effect on the inhibition of attachment by the protease inhibitor. Taken together, we conclude that concurrent P. acanthoamebae attachment to amoebae is required for several amoebal released molecules and serine protease activity, implying the existence of a complicated host–parasite relationship.
-
Cyclopropanation of α-mycolic acids is not required for cording in Mycobacterium brumae and Mycobacterium fallax
More LessThe capacity to form microscopic cords (cording) of Mycobacterium species has been related to their virulence. The compounds responsible for cording are unknown, but a recent study has shown that cording could be related to the fine structure of α-mycolic acids. This investigation attributes the need for a proximal cyclopropane in α-mycolic acids for cording in Mycobacterium tuberculosis and Mycobacterium bovis BCG and proposes cyclopropanases as good targets for new chemotherapeutic agents. As other Mycobacterium species in addition to M. tuberculosis and M. bovis form microscopic cords, it would be of major interest to know whether the relationship between proximal cyclopropanation of α-mycolic acids and cording could be extended to non-tuberculous mycobacteria. In this study, we have examined the correlation between the cording and cyclopropanation of α-mycolic acids in two species, Mycobacterium brumae and Mycobacterium fallax. Scanning electron microscopy images showed, for the first time to our knowledge, the fine structure of microscopic cords of M. brumae and M. fallax, confirming that these two species form true cords. Furthermore, NMR analysis performed on the same cording cultures corroborates the absence of cyclopropane rings in their α-mycolic acids. Therefore, we can conclude that the correlation between cording and cyclopropanation of α-mycolic acids cannot be extended to all mycobacteria. As M. brumae and M. fallax grow rapidly and have a simple pattern of mycolic acids (only α-unsaturated mycolic acids), we propose these two species as suitable models for the study of the role of mycolic acids in cording.
- Top
-
- Physiology and Biochemistry
-
-
The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus
More LessCertain heavy metal ions such as copper and zinc serve as essential cofactors of many enzymes, but are toxic at high concentrations. Thus, intracellular levels have to be subtly balanced. P-type ATPases of the PIB-subclass play a major role in metal homeostasis. The thermoacidophile Sulfolobus solfataricus possesses two PIB-ATPases named CopA and CopB. Both enzymes are present in cells grown in copper-depleted medium and are accumulated upon an increase in the external copper concentration. We studied the physiological roles of both ATPases by disrupting genes copA and copB. Neither of them affected the sensitivity of S. solfataricus to reactive oxygen species, nor were they a strict prerequisite to the biosynthesis of the copper protein cytochrome oxidase. Deletion mutant analysis demonstrated that CopA is an effective copper pump at low and high copper concentrations. CopB appeared to be a low-affinity copper export ATPase, which was only relevant if the media copper concentration was exceedingly high. CopA and CopB thus act as resistance factors to copper ions at overlapping concentrations. Moreover, growth tests on solid media indicated that both ATPases are involved in resistance to silver.
-
Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae
More LessGenome sequence analysis of different fungi of the family Arthrodermataceae revealed the presence of a gene cluster consisting of five genes with high sequence similarity to those involved in the early common steps of ergot alkaloid biosynthesis in Aspergillus fumigatus and Claviceps purpurea. To provide evidence that this cluster is involved in ergot alkaloid biosynthesis, the gene ARB_04646 of the fungus Arthroderma benhamiae was cloned into pQE60 and expressed in Escherichia coli. Enzyme assays with the soluble tetrameric His6-tagged protein proved unequivocally that the deduced gene product, here termed ChaDH, catalysed the oxidation of chanoclavine-I in the presence of NAD+, resulting in the formation of chanoclavine-I aldehyde. The enzyme product was unequivocally proven by NMR and MS analyses. Therefore, ChaDH functions as a chanoclavine-I dehydrogenase. K m values for chanoclavine-I and NAD+ were 0.09 and 0.36 mM, respectively. Turnover number was 0.76 s–1.
-
Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent
More LessCampylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c–cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K d value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of 63NiCl2. The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.
-
Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling
Proteins belonging to the PII family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of PII relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, PII is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of PII proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that PII might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense PII proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of PII by ATP. Both PII uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that PII proteins might act as cellular energy sensors.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
