-
Volume 157,
Issue 5,
2011
Volume 157, Issue 5, 2011
- Microbial Pathogenicity
-
-
-
The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation
More LessAlthough the conditions for inducing virulence protein expression in vitro are different, both classical and El Tor biotypes of Vibrio cholerae have been reported to regulate the expression of virulence proteins such as cholera toxin (CT) and toxin-coregulated pili (Tcp) through the ToxR/S/T system. The transcription activator ToxR responds to environmental stimuli such as pH and temperature and activates the second transcriptional regulator ToxT, which upregulates expression of virulence proteins. In addition to the ToxR/S/T signalling system, V. cholerae has been proposed to utilize another two-component system VarS/VarA to modulate expression of virulence genes. Previous study has shown that VarA of the VarS/VarA system is involved in the regulation of virulence proteins in the classical V. cholerae O395 strain; however, no further analysis was performed concerning VarS. In this study, we constructed varS mutants derived from the classical O395 and El Tor C6706 strains and demonstrated that VarS is also involved in the expression of the virulence proteins CT and Tcp from the V. cholerae classical and El Tor strains. This expression is through regulation of ToxT expression in response to environmental changes due to different toxin-inducing conditions.
-
-
-
-
Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae
More LessAmerican foulbrood is a bacterial disease of worldwide distribution that affects larvae of the honeybee Apis mellifera. The causative agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Several authors have proposed that P. larvae secretes metalloproteases that are involved in the larval degradation that occurs after infection. The aim of the present work was to evaluate the production of a metalloprotease by P. larvae during larval infection. First, the complete gene encoding a metalloprotease was identified in the P. larvae genome and its distribution was evaluated by PCR in a collection of P. larvae isolates from different geographical regions. Then, the complete gene was amplified, cloned and overexpressed, and the recombinant metalloprotease was purified and used to generate anti-metalloprotease antibodies. Metalloprotease production was evaluated by immunofluorescence and fluorescence in situ hybridization. The gene encoding a P. larvae metalloprotease was widely distributed in isolates from different geographical origins in Uruguay and Argentina. Metalloprotease was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. Its production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyse milk proteins as described for P. larvae, suggesting that could be involved in larval degradation. This work contributes to the knowledge of the pathogenicity mechanisms of a bacterium of great economic significance and is one step in the characterization of potential P. larvae virulence factors.
-
-
-
The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes
More LessLarvae of Galleria mellonella are widely used to evaluate microbial virulence and to assess the in vivo efficacy of antimicrobial agents. The aim of this work was to examine the ability of an Aspergillus fumigatus toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with A. fumigatus conidia (P = 0.0052). It was demonstrated that a dose of 2 µg fumagillin ml−1 reduced the ability of insect immune cells (haemocytes) to kill opsonized cells of Candida albicans (P = 0.039) and to phagocytose A. fumigatus conidia (P = 0.016). Fumagillin reduced the oxygen uptake of haemocytes and decreased the translocation of a p47 protein which is homologous to p47phox, a protein essential for the formation of a functional NADPH oxidase complex required for superoxide production. In addition, toxin-treated haemocytes showed reduced levels of degranulation as measured by the release of a protein showing reactivity to an anti-myeloperoxidase antibody (P<0.049) that was subsequently identified by liquid chromatography-MS analysis as prophenoloxidase. This work demonstrates that fumagillin suppresses the immune response of G. mellonella larvae by inhibiting the action of haemocytes and thus renders the larvae susceptible to infection. During growth of the fungus in the larvae, this toxin, along with others, may facilitate growth by suppressing the cellular immune response.
-
-
-
In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess
Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host–parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host’s exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host–parasite interaction and parasite cell death.
-
-
-
Characterization of nuclear localization signals in the type III effectors HsvG and HsvB of the gall-forming bacterium Pantoea agglomerans
HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv. betae, determine host specificity on gypsophila and beet, respectively. They were previously shown to be DNA-binding proteins imported into host and non-host nuclei and might act as transcriptional activators. Sequence analysis of these effectors did not detect canonical nuclear localization signals (NLSs), but two basic amino acid clusters designated putative NLS1 and NLS2 were detected in their N-terminal and C-terminal regions, respectively. pNIA assay for nuclear import in yeast and bombardment of melon leaves with each of the NLSs fused to a 2xYFP reporter indicated that putative NLS1 and NLS2 were functional in transport of HsvG into the nucleus. A yeast two-hybrid assay showed that HsvB, HsvG, putative NLS1, putative NLS2, HsvG converted into HsvB, or HsvB converted into HsvG by exchanging the repeat domain, all interacted with AtKAP-α and importin-α3 of Arabidopsis thaliana. Deletion analysis of the NLS domains in HsvG suggested that putative NLS1 or NLS2 were required for pathogenicity on gypsophila cuttings and presumably for import of HsvG into the nucleus. This study demonstrates the presence of two functional NLSs in the type III effectors HsvG and HsvB.
-
- Physiology And Biochemistry
-
-
-
KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis
In Saccharomyces cerevisiae, HSL1 (NIK1) encodes a serine-threonine protein kinase involved in cell cycle control and morphogenesis. Deletion of its putative orthologue in Kluyveromyces lactis, KlHSL1, gives rise to sensitivity to the respiratory inhibitor antimycin A (AA). Resistance to AA on glucose (Rag+ phenotype) is associated with genes (RAG) required for glucose metabolism/glycolysis. To understand the relationship between RAG and KlHSL1, rag and Klhsl1Δ mutant strains were investigated. The analysis showed that all the mutants contained a phosphorylated form of Hog1 and displayed an inability to synthesize/accumulate glycerol as a compatible solute. In addition, rag mutants also showed alterations in both cell wall and membrane fatty acids. The pleiotropic defects of these strains indicate that a common pathway regulates glucose utilization and stress response mechanisms, suggesting impaired adaptation of the plasma membrane/cell wall during the respiratory–fermentative transition. KlHsl1 could be the link between these adaptive pathways and the morphogenetic checkpoint.
-
-
-
-
LmrR-mediated gene regulation of multidrug resistance in Lactococcus lactis
More LessMultidrug resistance (MDR) in Lactococcus lactis is due to the expression of the membrane ATP-binding cassette (ABC) transporter LmrCD. In the absence of drugs, the transcriptional regulator LmrR prevents expression of the lmrCD operon by binding to its operator site. Through an autoregulatory mechanism LmrR also suppresses its own expression. Although the lmrR and lmrCD genes have their own promoters, primer extension analysis showed the presence of a long transcript spanning the entire lmrR–lmrCD cluster, in addition to various shorter transcripts harbouring the lmrCD genes only. ‘In-gel’ Cu-phenanthroline footprinting analysis indicated an extensive interaction between LmrR and the lmrR promoter/operator region. Atomic force microscopy imaging of the binding of LmrR to the control region of lmrR DNA showed severe deformations indicative of DNA wrapping and looping, while LmrR binding to a fragment containing the lmrCD control region induced DNA bending. The results further suggest a drug-dependent regulation mechanism in which the lmrCD genes are co-transcribed with lmrR as a polycistronic messenger. This leads to an LmrR-mediated regulation of lmrCD expression that is exerted from two different locations and by distinct regulatory mechanisms.
-
-
-
Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86
More LessPseudomonas putida CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [14C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of P. putida KT2440 and carbohydrate-selective porin OprB of various Pseudomonas strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of P. putida CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain’s ability to utilize aromatics and organic acids over glucose.
-
-
-
Secreted glutamic protease rescues aspartic protease Pep deficiency in Aspergillus fumigatus during growth in acidic protein medium
In an acidic protein medium Aspergillus fumigatus secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to Aspergillus niger aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in A. fumigatus wild-type D141 and in a pepΔ mutant. Either A. fumigatus Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to A. fumigatus alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in Pichia pastoris showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to A. niger aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non-Aspergillus fungi.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
