-
Volume 157,
Issue 4,
2011
Volume 157, Issue 4, 2011
- Microbial Pathogenicity
-
-
-
Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1
More LessUsing antibodies raised with C. trachomatis fusion proteins, we localized a hypothetical protein encoded by the ORF ct622 in the cytoplasm of C. trachomatis-infected mammalian cells. The detection was specific since the antibody labelling of CT622 protein was removed by preabsorption with CT622 but not other fusion proteins. We similarly confirmed that CT621, a known secretion protein encoded by a hypothetical ORF downstream of ct622, was secreted into host cell cytosol. Proteins CT622 and CT621 displayed a similar secretion pattern, with both intra-inclusion and host cell cytosol localization, that was distinct from that of CPAF (chlamydial protease/proteasome-like activity factor). However, the expression and secretion kinetics differed significantly between CT622 and CT621: CT622 mRNA was detected at 2 h, protein at 6 h and secretion of protein into host cell cytoplasm at 36 h post-infection, while CT621 mRNA was detected at 8 h, protein at 16 h and secretion at 24 h. The secretion of both CT622 and CT621 was blocked by N′-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide (compound 1), an inhibitor known to target the type III secretion system of bacteria. These results suggest that CT621 and CT622 may fulfil different functions during chlamydial intracellular growth. Further characterization of these proteins may generate important information for understanding chlamydial pathogenesis.
-
-
-
-
The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion
Enteropathogenic Escherichia coli (EPEC) is an important cause of infectious diarrhoea. It colonizes human intestinal epithelial cells by delivering effector proteins into the host cell cytoplasm via a type III secretion system (T3SS) encoded within the chromosomal locus of enterocyte effacement (LEE). The LEE pathogenicity island also encodes a lytic transglycosylase (LT) homologue named EtgA. In the present work we investigated the significance of EtgA function in type III secretion (T3S). Purified recombinant EtgA was found to have peptidoglycan lytic activity in vitro. Consistent with this function, signal peptide processing and bacterial cell fractionation revealed that EtgA is a periplasmic protein. EtgA possesses the conserved glutamate characteristic of the LT family, and we show here that it is essential for enzymic activity. Overproduction of EtgA in EPEC inhibits bacterial growth and induces cell lysis unless the predicted catalytic glutamate is mutated. An etgA mutant is attenuated for T3S, red blood cell haemolysis and EspA filamentation. BfpH, a plasmid-encoded putative LT, was not able to functionally replace EtgA. Overall, our results indicate that the muramidase activity of EtgA is not critical but makes a significant contribution to the efficiency of the T3S process.
-
-
-
UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells
Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.
-
-
-
N-Octanoylhomoserine lactone signalling mediated by the BpsI–BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei
More LessThe genome of Burkholderia pseudomallei encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces N-octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical B. pseudomallei isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant Escherichia coli heterologously expressing each of the three B. pseudomallei AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI2 and BpsI3 were N-(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and N-(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR2 and BpsR3, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by B. pseudomallei KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI2 was not required, and BpsI3 was partially required for biofilm formation. Unlike the bpsI mutant, biofilm formation in the bpsI3 mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI3. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the bpsI3 mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in B. pseudomallei, possibly by competing with endogenous C8HL for binding to BpsR.
-
-
-
Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response
More LessMycobacterium abscessus is considered to be the most virulent of the rapidly growing mycobacteria. Generation of bacterial gene knockout mutants has been a useful tool for studying factors that contribute to virulence of pathogenic bacteria. Until recently, the optimal genetic approach to generation of M. abscessus gene knockout mutants was not clear. Based on the recent identification of genetic recombineering as the preferred approach, a M. abscessus mutant was generated in which the gene mmpL4b, critical to glycopeptidolipid synthesis, was deleted. Compared to the previously well-characterized parental strain 390S, the mmpL4B deletion mutant had lost sliding motility and the ability to form biofilm, but acquired the ability to replicate in human macrophages and stimulate macrophage Toll-like receptor 2. This study demonstrates that deletion of a gene associated with expression of a cell-wall lipid can result in acquisition of an immunostimulatory, invasive bacterial phenotype and has important implications for the study of M. abscessus pathogenesis at the cellular level.
-
-
-
Comparative analysis and mutation effects of fpp2–fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum
Flavobacterium psychrophilum is a very significant fish pathogen that secretes two biochemically characterized extracellular proteolytic enzymes, Fpp1 and Fpp2. The genes encoding these enzymes are organized as an fpp2–fpp1 tandem in the genome of strain F. psychrophilum THC02/90. Analysis of the corresponding encoded proteins showed that they belong to two different protease families. For gene function analysis, new genetic tools were developed in F. psychrophilum by constructing stable isogenic fpp1 and fpp2 mutants via single-crossover homologous recombination. RT-PCR analysis of wild-type and mutant strains suggested that both genes are transcribed as a single mRNA from the promoter located upstream of the fpp2 gene. Phenotypic characterization of the fpp2 mutant showed lack of caseinolytic activity and higher colony spreading compared with the wild-type strain. Both characteristics were recovered in the complemented strain. One objective of this work was to assess the contribution to virulence of these proteolytic enzymes. LD50 experiments using the wild-type strain and mutants showed no significant differences in virulence in a rainbow trout challenge model, suggesting instead a possible nutritional role. The gene disruption procedure developed in this work, together with the knowledge of the complete genome sequence of F. psychrophilum, open new perspectives for the study of gene function in this bacterium.
-
- Physiology And Biochemistry
-
-
-
Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG
Pathogenic mycobacteria possess two homologous chaperones encoded by cpn60.1 and cpn60.2. Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the Mycobacterium bovis BCG cpn60.1 (Mb3451c) gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (Δcpn60.1) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the Δcpn60.1 mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the Δcpn60.1 mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, Δcpn60.1 bacteria are more sensitive to stress induced by H2O2 but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the Δcpn60.1 mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the Δcpn60.1 mutant. In mice, the Δcpn60.1 mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against Mycobacterium tuberculosis H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the cpn60.1 gene in M. bovis BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to H2O2-induced stress but is not essential for its vaccine potential.
-
-
-
-
The nitrogen interaction network in Synechococcus WH5701, a cyanobacterium with two PipX and two PII-like proteins
More LessNitrogen regulation involves the formation of different types of protein complexes between signal transducers and their transcriptional or metabolic targets. In oxygenic phototrophs, the signal integrator PII activates the enzyme N-acetyl-l-glutamate kinase (NAGK) by complex formation. PII also interacts with PipX, a protein with a tudor-like domain that mediates contacts with PII and with the transcriptional regulator NtcA, to which it binds to increase its activity. Here, we use a combination of in silico, yeast two-hybrid and in vitro approaches to investigate the nitrogen regulation network of Synechococcus WH5701, a marine cyanobacterium with two PII (GlnB_A and GlnB_B) and two PipX (PipX_I and PipX_II) proteins. Our results indicate that GlnB_A is functionally equivalent to the canonical PII protein from Synechococcus elongatus. GlnB_A interacted with PipX and NAGK proteins and stimulated NAGK activity, counteracting arginine inhibition. GlnB_B had only a slight stimulatory effect on NAGK activity, but its potential to bind effectors and form heterotrimers in Synechococcus WH5701 indicates additional regulatory functions. PipX_II, and less evidently PipX_I, specifically interacted with GlnB_A and NtcA, supporting a role for both Synechococcus WH5701 PipX proteins in partner swapping with GlnB_A and NtcA.
-
-
-
Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system
More LessGreen sulfur bacteria (GSB) oxidize sulfide and thiosulfate to sulfate, with extracellular globules of elemental sulfur as an intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245, or the two dsrCABL clusters (CT0851–CT0854, CT2247–2250), abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsrU/CT2246 had no effect. The DSR system also seems to be involved in the formation of thiosulfate, because thiosulfate was released from wild-type cells during sulfide oxidation, but not from the dsr mutants. The dsr mutants incapable of complete substrate oxidation oxidized sulfide and thiosulfate about twice as fast as the wild-type, while having only slightly lower growth rates (70–80 % of wild-type). The increased oxidation rates seem to compensate for the incomplete substrate oxidation to satisfy the requirement for reducing equivalents during growth. A mutant in which two sulfide : quinone oxidoreductases (sqrD/CT0117 and sqrF/CT1087) were deleted exhibited a decreased sulfide oxidation rate (∼50 % of wild-type), yet formation and consumption of sulfur globules were not affected. The observation that mutants lacking the DSR system maintain efficient growth suggests that the DSR system is dispensable in environments with sufficiently high sulfide concentrations. Thus, the DSR system in GSB may have been acquired by horizontal gene transfer as a response to a need for enhanced substrate utilization in sulfide-limiting habitats.
-
-
-
Identification and characterization of the Streptomyces globisporus 1912 regulatory gene lndYR that affects sporulation and antibiotic production
Here, we report the identification and functional characterization of the Streptomyces globisporus 1912 gene lndYR, which encodes a GntR-like regulator of the YtrA subfamily. Disruption of lndYR arrested sporulation and antibiotic production in S. globisporus. The results of in vivo and in vitro studies revealed that the ABC transporter genes lndW–lndW2 are targets of LndYR repressive action. In Streptomyces coelicolor M145, lndYR overexpression caused a significant increase in the amount of extracellular actinorhodin. We suggest that lndYR controls the transcription of transport system genes in response to an as-yet-unidentified signal. Features that distinguish lndYR-based regulation from other known regulators are discussed.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
