-
Volume 157,
Issue 10,
2011
Volume 157, Issue 10, 2011
- Microbial Pathogenicity
-
-
-
Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome–lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
-
-
-
-
Enterohaemorrhagic, but not enteropathogenic, Escherichia coli infection of epithelial cells disrupts signalling responses to tumour necrosis factor-alpha
Enterohaemorrhagic Escherichia coli (EHEC), serotype O157 : H7 is a non-invasive, pathogenic bacterium that employs a type III secretion system (T3SS) to inject effector proteins into infected cells. In this study, we demonstrate that EHEC blocks tumour necrosis factor-alpha (TNFα)-induced NF-κB signalling in infected epithelial cells. HEK293T and INT407 epithelial cells were challenged with EHEC prior to stimulation with TNFα. Using complementary techniques, stimulation with TNFα caused activation of NF-κB, as determined by luciferase reporter assay (increase in gene expression), Western blotting (phosphorylation of IκBα), immunofluorescence (p65 nuclear translocation) and immunoassay (CXCL-8 secretion), and each was blocked by EHEC O157 : H7 infection. In contrast, subversion of host cell signalling was not observed following exposure to either enteropathogenic E. coli, strain E2348/69 (O127 : H6) or the laboratory E. coli strain HB101. Heat-killed EHEC had no effect on NF-κB activation by TNFα. Inhibition was mediated, at least in part, by Shiga toxins and by the O157 plasmid, but not by the T3SS or flagellin, as demonstrated by using isogenic mutant strains. These findings indicate the potential for developing novel therapeutic targets to interrupt the infectious process.
-
- Physiology And Biochemistry
-
-
-
Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans
More LessDeinococcus radiodurans shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. radR is located upstream of drB0090, which encodes a putative sensor histidine kinase (RadS) on the megaplasmid. Deletion of these genes both individually and together resulted in hypersensitivity to DNA-damaging agents and a delayed or altered double-strand break repair. A ΔradRradS double mutant and a ΔradR single mutant showed nearly identical responses to gamma radiation and UVC. Wild-type RadR and RadS complemented the corresponding mutant strains, but also exhibited significant cross-complementation, albeit at lower doses of gamma radiation. The radS transcript was not detected in the ΔradR mutant, suggesting the existence of a radRS operon. Recombinant RadS was autophosphorylated and could catalyse the transfer of γ phosphate from ATP to RadR in vitro. These results indicated the functional interaction of RadS and RadR, and suggested a role for the RadS/RadR two-component system in the radiation resistance of this bacterium.
-
-
-
-
Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16
More LessCupriavidus necator H16 (DSM 428), whose genome has been sequenced, was found to degrade N-acetyltaurine as a sole source of carbon and energy for growth. Utilization of the compound was quantitative. The degradative pathway involved an inducible N-acetyltaurine amidohydrolase (NaaS), which catalysed the cleavage of N-acetyltaurine to acetate and taurine. The degradation of the latter compound is via an inducible, degradative pathway that involves taurine dehydrogenase [EC 1.4.2.–], sulfoacetaldehyde acetyltransferase [EC 2.3.3.15], phosphotransacetylase [EC 2.4.1.8], a sulfite exporter [TC 9.A.29.2.1] and sulfite dehydrogenase [EC 1.8.2.1]. Induction of the expression of representative gene products, encoded by at least four gene clusters, was confirmed biochemically. The acetate released by NaaS was activated to acetyl-CoA by an inducible acetate–CoA ligase [EC 6.2.1.1]. NaaS was purified to homogeneity; it had a K m value of 9.4 mM for N-acetyltaurine, and it contained tightly bound Zn and Fe atoms. The denatured enzyme has a molecular mass of about 61 kDa (determined by SDS-PAGE) and the native enzyme was apparently monomeric. Peptide-mass fingerprinting identified the locus tag as H16_B0868 in a five-gene cluster, naaROPST (H16_B0865–H16_B0869). The cluster presumably encodes a LysR-type transcriptional regulator (NaaR), a membrane protein (NaaO), a solute : sodium symporter-family permease [TC 2.A.21] (NaaP), the metal-dependent amidohydrolase (NaaS) and a putative metallochaperone (COG0523) (NaaT). Reverse-transcription PCR indicated that naaOPST were inducibly transcribed.
-
-
-
Identification of an l-methionine γ-lyase involved in the production of hydrogen sulfide from l-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586
More LessFusobacterium nucleatum produces an abundance of hydrogen sulfide (H2S) in the oral cavity that is mediated by several enzymes. The identification and characterization of three distinct enzymes (Fn0625, Fn1055 and Fn1220) in F. nucleatum that catalyse the production of H2S from l-cysteine have been reported. In the current study, a novel enzyme involved in the production of H2S in F. nucleatum ATCC 25586, whose molecular mass had been estimated to be approximately 130 kDa, was identified by two-dimensional electrophoresis combined with MALDI-TOF MS. The enzyme, Fn1419, has previously been characterized as an l-methionine γ-lyase. SDS-PAGE and gel-filtration chromatography indicated that Fn1419 has a molecular mass of 43 kDa and forms tetramers in solution. Unlike other enzymes associated with H2S production in F. nucleatum, the quaternary structure of Fn1419 was not completely disrupted by exposure to SDS. The purified recombinant enzyme exhibited a K m of 0.32±0.02 mM and a k cat of 0.69±0.01 s−1. Based on current and published data, the enzymic activity for H2S production from l-cysteine in F. nucleatum is ranked as follows: Fn1220>Fn1055>Fn1419>Fn0625. Based on kinetic values and relative mRNA levels of the respective genes, as determined by real-time quantitative PCR, the amount of H2S produced by Fn1419 was estimated to be 1.9 % of the total H2S produced from l-cysteine in F. nucleatum ATCC 25586. In comparison, Fn1220 appeared to contribute significantly to H2S production (87.6 %).
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
