-
Volume 155,
Issue 4,
2009
Volume 155, Issue 4, 2009
- Microbial Pathogenicity
-
-
Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia
More LessChronic lung infection with P. aeruginosa and excessive neutrophil-associated inflammation are major causes of morbidity and mortality in patients with cystic fibrosis (CF). Overproduction of an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are resistant to antibiotics and host defences. Alginate overproduction or mucoidy is controlled by a stress-related ECF sigma factor AlgU/T. Mutation in the anti-sigma factor MucA is a known mechanism for conversion to mucoidy. Recently, we showed that inactivation of a kinase (KinB) in nonmucoid strain PAO1 results in overproduction of alginate. Here, we report the initial characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer membrane protein that exhibited increased expression in the mucoid PAO1kinB mutant. The lipotoxin family of proteins has been previously shown to induce inflammation in lung epithelia, which may play a role in CF disease progression. Expression of LptF was observed to be AlgU-dependent and upregulated in CF isolates. Deletion of lptF from the kinB mutant had no effect on alginate production. Deletion of lptF from PAO1 caused a differential susceptibility to oxidants that can be generated by phagocytes. The lptF and algU mutants were more sensitive to hypochlorite than PAO1. However, the lptF mutant displayed increased resistance to hydrogen peroxide. LptF also contributed to adhesion to A549 human lung epithelial cells. Our data suggest that LptF is an outer membrane protein that may be important for P. aeruginosa survival in harsh environments, including lung colonization in CF.
-
Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection
Clinical isolates of Pseudomonas aeruginosa that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in P. aeruginosa. Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to be located in the hmgA gene, which putatively encodes the enzyme homogentisate-1,2-dioxygenase. Complementation studies indicate that hmgA disruption is responsible for the hyperproduction of pyomelanin in both laboratory and clinical isolates. A relationship between hmgA disruption and adaptation to chronic infection was explored and our results show that the inactivation of hmgA produces a slight reduction of killing ability in an acute murine model of lung infection. On the other hand, it also confers decreased clearance and increased persistence in chronic lung infections. Whether pyomelanin production is the cause of the increased adaptation to chronicity or just a side effect of hmgA inactivation is a question to be studied in future; however, this adaptation is consistent with the higher resistance to oxidative stress conferred in vitro by the pyomelanin pigment. Our results clearly demonstrate that hmgA inactivation leads to a better adaptation to chronic infection, and strongly suggest that this mechanism may be exploited in naturally occurring P. aeruginosa strains.
-
Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface
More LessThe outermost layer of the Candida albicans cell wall is enriched with mannosylated glycoproteins. We have used a range of isogenic glycosylation mutants of C. albicans, which are defective to varying degrees in cell wall protein mannosylation, to investigate the role of the outermost layer of the yeast cell wall in mediating the fungicidal action of the cationic, α-helical antimicrobial peptide dermaseptin S3(1-16) [DsS3(1-16)]. The degree of phosphomannan loss, and concomitant reduction in surface negative charge, from the series of glycosylation mutants correlated with reduced levels of peptide binding to the cells. In turn, the reduced peptide binding correlated with enhanced resistance to DsS3(1-16). To ascertain whether DsS3(1-16) binds to negatively charged phosphate, we studied the effect of exogenous glucosamine 6-phosphate, and glucosamine hydrochloride as a negative control, on the antifungal efficacy of DsS3(1-16). Glucosamine 6-phosphate retarded the efficacy of DsS3(1-16), and this was attributed to the presence of phosphate, because addition of identical concentrations of glucosamine hydrochloride had little detrimental effect on peptide efficacy. Fluorescence microscopy with DsS3(1-16) tagged with fluorescein revealed that the peptide binds to the outer surface of the yeast cell, supporting our previous conclusion that the presence of exterior phosphomannan is a major determinant of the antifungal potency of DsS3(1-16). The binding of the peptide to the cell surface was a transient event that was followed by apparent localization of DsS3(1-16) in the vacuole or dissemination throughout the entire cytosol. The presence of glucosamine 6-phosphate clearly reduced the proportion of cells in the population that showed complete cytosolic staining, implying that the binding and entry of the peptide into the cytosol is significantly reduced due to the exogenous phosphate sequestering the peptide and reducing the amount of peptide able to bind to the surface phosphomannan. In conclusion, we present evidence that an antimicrobial peptide, similar to those employed by cells of the human immune system, has evolved to recognize molecular patterns on the surface of pathogens in order to maximize efficacy.
-
Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC
Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31–137 of EseC are required for EseC-EscA interaction. Mutation of EseC residues 31–137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31–137 of EseC increased the LD50 by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.
-
Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth
There is growing evidence that strains of Mycobacterium tuberculosis differ in pathogenicity and transmissibility, but little is understood about the contributory factors. We have previously shown that increased expression of the principal sigma factor, SigA, mediates the capacity of M. tuberculosis strain 210 to grow more rapidly in human monocytes, compared with other strains. Strain 210 is part of the widespread W-Beijing family of M. tuberculosis strains and includes clinical isolate TB294. To identify genes that respond to changes in SigA levels and that might enhance intracellular growth, we examined RNA and protein expression patterns in TB294-pSigA, a recombinant strain of TB294 that overexpresses sigA from a multicopy plasmid. Lysates from broth-grown cultures of TB294-pSigA contained high levels of Eis, a protein known to modulate host–pathogen interactions. DNA microarray analysis indicated that the eis gene, Rv2416c, was expressed at levels in TB294-pSigA 40-fold higher than in the vector control strain TB294-pCV, during growth in the human monocyte cell line MonoMac6. Other genes with elevated expression in TB294-pSigA showed much smaller changes from TB294-pCV, and the majority of genes with expression differences between the two strains had reduced expression in TB294-pSigA, including an unexpected number of genes associated with the DNA-damage response. Real-time PCR analyses confirmed that eis was expressed at very high levels in TB294-pSigA in monocytes as well as in broth culture, and further revealed that, like sigA, eis was also more highly expressed in wild-type TB294 than in the laboratory strain H37Rv, during growth in monocytes. These findings suggested an association between increased SigA levels and eis activation, and results of chromatin immunoprecipitation confirmed that SigA binds the eis promoter in live TB294 cells. Deletion of eis reduced growth of TB294 in monocytes, and complementation of eis reversed this effect. We conclude that SigA regulates eis, that there is a direct correlation between upregulation of SigA and high expression levels of eis, and that eis contributes to the enhanced capacity of a clinical isolate of M. tuberculosis strain 210 to grow in monocytes.
-
Lipopolysaccharide biosynthesis-related genes are required for colony pigmentation of Porphyromonas gingivalis
More LessThe periodontopathic bacterium Porphyromonas gingivalis forms pigmented colonies when incubated on blood agar plates as a result of accumulation of μ-oxo haem dimer on the cell surface. Gingipain–adhesin complexes are responsible for production of μ-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from P. gingivalis by Tn4351 transposon mutagenesis [Hoover & Yoshimura (1994), FEMS Microbiol Lett 124, 43–48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn4351 DNA in a gene homologous to the ugdA gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the rfa gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn4351 DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant (rfa) were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the rfa deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type P. gingivalis. A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type P. gingivalis in a dose-dependent manner. These results suggest that the rfa gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain–adhesin complexes.
- Top
-
- Physiology And Biochemistry
-
-
Dormant forms of Mycobacterium smegmatis with distinct morphology
Cultivation of Mycobacterium smegmatis cells in a nitrogen-limited minimal medium (SR-1) followed by prolonged storage at room temperature without shaking resulted in the gradual accumulation of morphologically distinct ovoid forms characterized by (i) low metabolic activity; (ii) elevated resistance to antibiotics and to heat treatment; and (iii) inability to produce colonies on standard agar plates (non-platable cells). Detailed microscopic examination confirmed that ovoid cells possessed an intact cell envelope, specific fine structure and large electron-transparent bodies in the cytoplasm. Cell staining with Nile red and analysis of the lipid content by TLC revealed the presence of significant amounts of apolar lipids in these bodies. The ovoid forms could be stored for significant periods (up to 5 months) and resuscitated afterwards in a modified Sauton's medium. Importantly, resuscitation of ovoid cells was accompanied by their transformation into the typical rod-shaped cells. We suggest that the observed ovoid cells represent dormant forms, resembling morphologically distinct cells of Mycobacterium tuberculosis previously isolated from tuberculosis patients and infected animals.
-
Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis
While the shotgun proteomics approach is gaining momentum in understanding microbial physiology, it remains limited by the paucity of high-quality genomic data, especially when it comes to poorly characterized newly identified phyla. At the same time, large-scale metagenomic sequencing projects produce datasets representing genomes of a variety of environmental microbes, although with lower sequence coverage and sequence quality. In this work we tested the utility of a metagenomic dataset enriched in sequences of environmental strains of Methylotenera mobilis, to assess the protein profile of a laboratory-cultivated strain, M. mobilis JLW8, as a proof of principle. We demonstrate that a large portion of the proteome predicted from the metagenomic sequence (approx. 20 %) could be identified with high confidence (three or more peptide sequences), thus gaining insights into the physiology of this bacterium, which represents a new genus within the family Methylophilaceae.
-
Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans
More LessBased on N-terminal sequences obtained from the purified cytoplasmic ferric reductases FerA and FerB, their corresponding genes were identified in the published genome sequence of Paracoccus denitrificans Pd1222. The ferA and ferB genes were cloned and individually inactivated by insertion of a kanamycin resistance marker, and then returned to P. denitrificans for exchange with their wild-type copies. The resulting ferA and ferB mutant strains showed normal growth in brain heart infusion broth. Unlike the ferB mutant, the strain lacking FerA did not grow on succinate minimal medium with ferric 2,3-dihydroxybenzoate as the iron source, and grew only poorly in the presence of ferric sulfate, chloride, citrate, NTA, EDTA and EGTA. Moreover, the ferA mutant strain was unable to produce catechols, which are normally detectable in supernatants from iron-limited wild-type cultures. Complementation of the ferA mutation using a derivative of the conjugative broad-host-range plasmid pEG400 that contained the whole ferA gene and its putative promoter region largely restored the wild-type phenotype. Partial, though significant, restoration could also be achieved with 1 mM chorismate added to the growth medium. The purified FerA protein acted as an NADH : FMN oxidoreductase and catalysed the FMN-mediated reductive release of iron from the ferric complex of parabactin, the major catecholate siderophore of P. denitrificans. The deduced amino acid sequence of the FerA protein has closest similarity to flavin reductases that form part of the flavin-dependent two-component monooxygenases. Taken together, our results demonstrate an essential role of reduced flavins in the utilization of exogenous ferric iron. These flavins not only provide the electrons for Fe(III) reduction but most probably also affect the rate of siderophore production.
-
Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic ‘Thiobacillus prosperus’
More LessThe halotolerant acidophile ‘Thiobacillus prosperus’ was shown to require chloride for growth. With ferrous iron as substrate, growth occurred at a rate similar to that of the well-studied acidophile Acidithiobacillus ferrooxidans. Previously, the salt (NaCl) requirement of ‘T. prosperus’ was not clear and its growth on ferrous iron was described as poor. A subtractive hybridization of cDNAs from ferrous-iron-grown and sulfur-grown ‘T. prosperus’ strain V6 led to identification of a cluster of genes similar to the rus operon reported to encode ferrous iron oxidation in A. ferrooxidans. However, the ‘T. prosperus’ gene cluster did not contain a homologue of cyc1, which is thought to encode a key cytochrome c in the pathway of electron transport from ferrous iron in A. ferrooxidans. Rusticyanin, another key protein in ferrous iron oxidation by A. ferrooxidans, was present in ‘T. prosperus’ at similar concentrations in cells grown on either ferrous iron or sulfur.
-
Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry
More LessPathogenic enteric bacteria are a major cause of drinking water related morbidity and mortality in developing countries. Solar disinfection (SODIS) is an effective means to fight this problem. In the present study, SODIS of two important enteric pathogens, Shigella flexneri and Salmonella typhimurium, was investigated with a variety of viability indicators including cellular ATP levels, efflux pump activity, glucose uptake ability, and polarization and integrity of the cytoplasmic membrane. The respiratory chain of enteric bacteria was identified to be a likely target of sunlight and UVA irradiation. Furthermore, during dark storage after irradiation, the physiological state of the bacterial cells continued to deteriorate even in the absence of irradiation: apparently the cells were unable to repair damage. This strongly suggests that for S. typhimurium and Sh. flexneri, a relatively small light dose is enough to irreversibly damage the cells and that storage of bottles after irradiation does not allow regrowth of inactivated bacterial cells. In addition, we show that light dose reciprocity is an important issue when using simulated sunlight. At high irradiation intensities (>700 W m−2) light dose reciprocity failed and resulted in an overestimation of the effect, whereas reciprocity applied well around natural sunlight intensity (<400 W m−2).
-
Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli
Switching from the motile planktonic bacterial lifestyle to a biofilm existence is stimulated by the signalling molecule bis-(3′-5′)-cyclic-diguanosine monophosphate (cyclic-di-GMP), which is antagonistically controlled by diguanylate cyclases (DGCs; characterized by GGDEF domains) and specific phosphodiesterases (PDEs; mostly featuring EAL domains). Here, we present the expression patterns of all 28 genes that encode GGDEF/EAL domain proteins in Escherichia coli K-12. Twenty-one genes are expressed in Luria–Bertani medium, with 15 being under σ S control. While a small subset of GGDEF/EAL proteins (YeaJ and YhjH) is dominant and modulates motility in post-exponentially growing cells, a diverse battery of GGDEF/EAL proteins is deployed during entry into stationary phase, especially in cells grown at reduced temperature (28 °C). This suggests that multiple signal input into cyclic-di-GMP control is particularly important in growth-restricted cells in an extra-host environment. Six GGDEF/EAL genes differentially control the expression of adhesive curli fimbriae. Besides the previously described ydaM, yciR, yegE and yhjH genes, these are yhdA (csrD), which stimulates the expression of the DGC YdaM and the major curli regulator CsgD, and yeaP, which contributes to expression of the curli structural operon csgBAC. Finally, we discuss why other GGDEF/EAL domain-encoding genes, despite being expressed, do not influence motility and/or curli formation.
-
The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis
Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a nirBD-encoded nitrite reductase have been found on the chromosome of M. tuberculosis. Previous studies have implied a role for NarGHJI in nitrate respiration rather than nitrate assimilation. Here, we show that a narG mutant of M. tuberculosis failed to grow on nitrate. A nirB mutant of M. tuberculosis failed to grow on both nitrate and nitrite. Mutant strains of Mycobacterium smegmatis mc2155 that are unable to grow on nitrate were isolated. The mutants were rescued by screening a cosmid library from M. tuberculosis, and a gene with homology to the response regulator gene glnR of Streptomyces coelicolor was identified. A ΔglnR mutant of M. tuberculosis was generated, which also failed to grow on nitrate, but regained its ability to utilize nitrate when nirBD was expressed from a plasmid, suggesting a role of GlnR in regulating nirBD expression. A specific binding site for GlnR within the nirB promoter was identified and confirmed by electrophoretic mobility shift assay using purified recombinant GlnR. Semiquantitative reverse transcription PCR, as well as microarray analysis, demonstrated upregulation of nirBD expression in response to GlnR under nitrogen-limiting conditions. In summary, we conclude that NarGHJI and NirBD of M. tuberculosis mediate the assimilatory reduction of nitrate and nitrite, respectively, and that GlnR acts as a transcriptional activator of nirBD.
-
Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose–galactose transitions
More LessGlucose is the favoured carbon source for Saccharomyces cerevisiae, and the Leloir pathway for galactose utilization is only induced in the presence of galactose during glucose-derepressed conditions. The goal of this study was to investigate the dynamics of glucose–galactose transitions. To this end, well-controlled, glucose-limited chemostat cultures were switched to galactose-excess conditions. Surprisingly, galactose was not consumed upon a switch to galactose excess under anaerobic conditions. However, the transcripts of the Leloir pathway were highly increased upon galactose excess under both aerobic and anaerobic conditions. Protein and enzyme-activity assays showed that impaired galactose consumption under anaerobiosis coincided with the absence of the Leloir-pathway proteins. Further results showed that absence of protein synthesis was not caused by glucose-mediated translation inhibition. Analysis of adenosine nucleotide pools revealed a fast decrease of the energy charge after the switch from glucose to galactose under anaerobic conditions. Similar results were obtained when glucose–galactose transitions were analysed under aerobic conditions with a respiratory-deficient strain. It is concluded that under fermentative conditions, the energy charge was too low to allow synthesis of the Leloir proteins. Hence, this study conclusively shows that the intracellular energy status is an important factor in the metabolic flexibility of S. cerevisiae upon changes in its environment.
-
Relaxed control of sugar utilization in Lactobacillus brevis
More LessPrioritization of sugar consumption is a common theme in bacterial growth and a problem for complete utilization of five and six carbon sugars derived from lignocellulose. Growth studies show that Lactobacillus brevis simultaneously consumes numerous carbon sources and appears to lack normal hierarchical control of carbohydrate utilization. Analysis of several independent L. brevis isolates indicated that co-utilization of xylose and glucose is a common trait for this species. Moreover, carbohydrates that can be used as a single carbon source are simultaneously utilized with glucose. Analysis of the proteome of L. brevis cells grown on glucose, xylose or a glucose/xylose mixture revealed the constitutive expression of the enzymes of the heterofermentative pathway. In addition, fermentative mass balances between mixed sugar inputs and end-products indicated that both glucose and xylose are simultaneously metabolized through the heterofermentative pathway. Proteomic and mRNA analyses revealed that genes in the xyl operon were expressed in the cells grown on xylose or on glucose/xylose mixtures but not in those grown on glucose alone. However, the expression level of XylA and XylB proteins in cells grown on a glucose/xylose mixture was reduced 2.7-fold from that observed in cells grown solely on xylose. These results suggest that regulation of xylose utilization in L. brevis is not stringently controlled as seen in other lactic acid bacteria, where carbon catabolite repression operates to prioritize carbohydrate utilization more rigorously.
-
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum
More LessCorynebacterium glutamicum is a biotin-auxotrophic bacterium and some strains efficiently produce glutamic acid under biotin-limiting conditions. In an effort to understand C. glutamicum metabolism under biotin limitation, growth of the type strain ATCC 13032 was investigated in batch cultures and a time-course analysis was performed. A transient excretion of organic acids was observed and we focused our attention on lactate synthesis. Lactate synthesis was due to the ldh-encoded l-lactate dehydrogenase (Ldh). Features of Ldh activity and ldh transcription were analysed. The ldh gene was shown to be regulated at the transcriptional level by SugR, a pleiotropic transcriptional repressor also acting on most phosphotransferase system (PTS) genes. Electrophoretic mobility shift assays (EMSAs) and site-directed mutagenesis allowed the identification of the SugR-binding site. Effector studies using EMSAs and analysis of ldh expression in a ptsF mutant revealed fructose 1-phosphate as a highly efficient negative effector of SugR. Fructose 1,6-bisphosphate also affected SugR binding.
- Top
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
