-
Volume 155,
Issue 3,
2009
Volume 155, Issue 3, 2009
- Microbial Pathogenicity
-
-
-
The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin
More LessThe Lyme disease spirochaete, Borrelia burgdorferi, can invade and persistently infect its hosts' connective tissues. We now demonstrate that B. burgdorferi adheres to the extracellular matrix component laminin. The surface-exposed outer-membrane protein ErpX was identified as having affinity for laminin, and is the first laminin-binding protein to be identified in a Lyme disease spirochaete. The adhesive domain of ErpX was shown to be contained within a small, unstructured hydrophilic segment at the protein's centre. The sequence of that domain is distinct from any previously identified bacterial laminin adhesin, suggesting a unique mode of laminin binding.
-
-
-
-
Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection
HtrA is a bifunctional stress protein required by many bacterial pathogens to successfully cause infection. Salmonella enterica serovar Typhimurium (S. Typhimurium) htrA mutants are defective in intramacrophage survival and are highly attenuated in mice. Transcription of htrA in Escherichia coli is governed by a single promoter that is dependent on σ E (RpoE). S. Typhimurium htrA also possesses a σ E-dependent promoter; however, we found that the absence of σ E had little effect on production of HtrA by S. Typhimurium. This suggests that additional promoters control expression of htrA in S. Typhimurium. We identified three S. Typhimurium htrA promoters. Only the most proximal promoter, htrAp3, was σ E dependent. The other promoters, htrAp1 and htrAp2, are probably recognized by the principal sigma factor σ 70. These two promoters were constitutively expressed but were also slightly induced by heat shock. Thus expression of htrA is different in S. Typhimurium and E. coli. The role of HtrA is to deal with misfolded/damaged proteins in the periplasm. It can do this either by degrading (protease activity) or folding/capturing (chaperone/sequestering, C/S, activity) the aberrant protein. We investigated which of these functions are important to S. Typhimurium in vitro and in vivo. Point or deletion mutants of htrA that encode variant HtrA molecules have been used in previous studies to investigate the role of different regions of HtrA in C/S and protease activity. These htrA variants were placed under the control of the S. Typhimurium htrAP123 promoters and expressed in a S. Typhimurium htrA mutant, GVB1343. Both wild-type HtrA and HtrA (HtrA S210A) lacking protease activity enabled GVB1343 to grow at high temperature (46 °C). Both molecules also significantly enhanced the growth/survival of GVB1343 in the liver and spleen of mice during infection. However, expression of wild-type HtrA enabled GVB1343 to grow to much higher levels than expression of HtrA S210A. Thus both the protease and C/S functions of HtrA operate in vivo during infection but the protease function is probably more important. Absence of either PDZ domain completely abolished the ability of HtrA to complement the growth defects of GVB1343 in vitro or in vivo.
-
-
-
A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis
More LessType II protein secretion plays a role in a wide variety of functions that are important for the ecology and pathogenesis of Legionella pneumophila. Perhaps most dramatic is the critical role that this secretion pathway has in L. pneumophila intracellular infection of aquatic protozoa. Recently, we showed that virulent L. pneumophila strain 130b secretes RNase activity through its type II secretion system. We now report the cloning and mutational analysis of the gene (srnA) encoding that novel type of secreted activity. The SrnA protein was defined as being a member of the T2 family of secreted RNases. Supernatants from mutants inactivated for srnA completely lacked RNase activity, indicating that SrnA is the major secreted RNase of L. pneumophila. Although srnA mutants grew normally in bacteriological media and human U937 cell macrophages, they were impaired in their ability to grow within Hartmannella vermiformis amoebae. This finding represents the second identification of a L. pneumophila type II effector being necessary for optimal intracellular infection of amoebae, with the first being the ProA zinc metalloprotease. Newly constructed srnA proA double mutants displayed an even larger infection defect that appeared to be the additive result of losing both SrnA and ProA. Overall, these data represent the first demonstration of a secreted RNase promoting an intracellular infection event, and support our long-standing hypothesis that the infection defects of L. pneumophila type II secretion mutants are due to the loss of multiple secreted effectors.
-
-
-
lmo1273, a novel gene involved in Listeria monocytogenes virulence
Listeria monocytogenes is a foodborne pathogen able to infect humans and many other mammalian species, leading to serious, often fatal disease. We have previously identified a five-gene locus in the genome of L. monocytogenes EGD-e which comprised three contiguous genes encoding paralogous type I signal peptidases. In the present study, we focused on the two distal genes of the locus (lmo1272 and lmo1273), encoding proteins sharing significant similarities with the YlqF and RnhB proteins, respectively, of Bacillus subtilis. lmo1273 could complement an Escherichia coli rnhA-rnhB thermosensitive growth phenotype, suggesting that it encodes a functional RNase H. Strikingly, inactivation of lmo1273 provoked a strong attenuation of virulence in the mouse model, and kinetic studies in infected mice revealed that multiplication of the lmo1273 mutant in target organs was significantly impaired. However, the mutation did not impair L. monocytogenes intracellular multiplication or cell-to-cell spread in cell culture models. Transcriptional profiles obtained with an lmo1273-overexpressing strain were compared to those of the wild-type strain, using microarray analyses. The data obtained suggest a pleiotropic regulatory role of Lmo1273 and possible links with amino acid uptake.
-
-
-
Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR
More LessCereulide, a depsipeptide structurally related to the antibiotic valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that cereulide is produced non-ribosomally by the plasmid-encoded peptide synthetase Ces. Using deletion mutants of the emetic reference strain B. cereus F4810/72, the influence of the well-known transcription factors PlcR, Spo0A and AbrB on cereulide production and on the transcription of the cereulide synthetase gene cluster was investigated. Our data demonstrate that cereulide synthesis is independent of the B. cereus specific virulence regulator PlcR but belongs to the Spo0A-AbrB regulon. Although cereulide production turned out to be independent of sporulation, it required the activity of the sporulation factor Spo0A. The σ A-promoted transcription of spo0A was found to be crucial for cereulide production, while the σ H-driven transcription of spo0A did not affect cereulide synthesis. Overexpression of the transition state factor AbrB in B. cereus F4810/72 resulted in a non-toxic phenotype. Moreover, AbrB was shown to bind efficiently to the main promoter region of the ces operon, indicating that AbrB acts as a repressor of cereulide production by negatively affecting ces transcription.
-
- Physiology And Biochemistry
-
-
-
Biological characterization of the zinc site coordinating histidine residues of staphylococcal enterotoxin C2
The bacterial toxin staphylococcal enterotoxin C2 (SEC2) can cause staphylococcal toxic shock syndrome and food poisoning. Although the previously determined crystal structure of SEC2 revealed that some histidine residues (His47, His118 and His122) contribute to the binding of zinc ions, little is known about their biological roles in SEC2. This prompted us to investigate the role of the zinc site coordinating histidine residues in the biological activities of SEC2. The mutants with substitutions at positions 118 and 122 all retained T-cell stimulatory activity, whereas the histidine mutants at position 47 were defective in the ability to stimulate T-cell proliferation. Further toxicity assays in vivo indicated that mutants SEC2-H118A and SEC2-H122A were defective in emetic and febrile activities. However, mutant SEC2-H47A could cause significant emetic and febrile responses in comparison with the other two histidine mutants. These findings suggested that the zinc-coordinating histidine residues play significant roles in superantigen and toxic activities of SEC2 and further implied that superantigen and febrile activities could be separable in staphylococcal enterotoxins. The results also show that it should be possible to design new SEC2 immunotherapeutic agents that have superantigen activity and low toxicity.
-
-
-
-
Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?
More LessConventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml−1 followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation.
-
-
-
Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa
More LessFungal cells maintain an internal hydrostatic pressure (turgor) of about 400–500 kPa. In the filamentous fungus Neurospora crassa, the initial cellular responses to hyperosmotic treatment are loss of turgor, a decrease in relative hyphal volume per unit length (within 1 min) and cell growth arrest; all recover over a period of 10–60 min due to increased net ion uptake and glycerol production. The electrical responses to hyperosmotic treatment are a transient depolarization of the potential (within 1 min), followed by a sustained hyperpolarization (after 4 min) to a potential more negative than the initial potential (a driving force for ion uptake). The nature of the transient depolarization was explored in the context of other transient responses to hyperosmotic shock, to determine whether activation of a specific ion permeability or some other rapid change in electrogenic transport was responsible. Changing the ionic composition of the extracellular medium revealed that K+ permeability increases and H+ permeability declines during the transient depolarization. We suggest that these changes are due to concerted inhibition of the electrogenic H+-ATPase, and an increase in a K+ conductance. Knockout mutants of known K+ (tok, trk, trm-8, hak-1) and Cl− (a clc-3 homologue) channels and transporters had no effect on the transient depolarization, but trk and hak-1 do play a role in osmoadaptation, as does a homologue of a serine kinase regulator of H+-ATPase in yeast, Ptk2.
-
-
-
Identification of non-flagellar genes involved in swarm cell differentiation using a Bacillus thuringiensis mini-Tn10 mutant library
More LessSwarming is a social phenomenon that enables motile bacteria to move co-ordinately over solid surfaces. The molecular basis regulating this process is not completely known and may vary among species. Insertional mutagenesis of a swarming-proficient Bacillus thuringiensis strain was performed, by use of the transposon mini-Tn10, to identify novel genetic determinants of swarming that are dispensable for flagellation, swimming motility, chemotaxis and active growth. Among the 67 non-swarming mutants obtained, six were selected that showed no defect in flagellar assembly and function, chemotaxis or growth rate. Sequence analysis of DNA flanking the transposon insertion led to the identification of previously uncharacterized genes that are involved in the development of swarming colonies by B. thuringiensis and that are highly conserved in all members of the Bacillus cereus sensu lato group. These genes encode non-flagellar proteins with putative activity as sarcosine oxidase, catalase-2, amino acid permease, ATP-binding cassette transporter, dGTP triphosphohydrolase and acetyltransferase. Functional analysis of two of the isolated mutants demonstrated that swarming differentiation depends on the intracellular levels of the osmoprotectant glycine betaine and on the quantity of synthesized phenazine secondary metabolites. The finding that proteins involved in diverse physiological processes have a role in swarming motility underlines the complexity of the molecular mechanisms governing this behaviour in B. thuringiensis.
-
-
-
CpgA, EF-Tu and the stressosome protein YezB are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/PrpC, in Bacillus subtilis
The conserved prpC, prkC, cpgA locus in Bacillus subtilis encodes respectively a Ser/Thr phosphatase, the cognate sensor kinase (containing an external PASTA domain suggested to bind peptidoglycan precursors) and CpgA, a small ribosome-associated GTPase that we have shown previously is implicated in shape determination and peptidoglycan deposition. In this study, in a search for targets of PrkC and PrpC, we showed that, in vitro, CpgA itself is phosphorylated on serine and threonine, and another GTPase, the translation factor EF-Tu, is also phosphorylated by the kinase on the conserved T384 residue. Both substrates are dephosphorylated by PrpC in vitro. In addition, we identified YezB, a 10.3 kDa polypeptide, and a component of the stressosome, as a substrate for both enzymes in vitro and apparently in vivo. We propose that the PrpC/PrkC/CpgA system constitutes an important element of a regulatory network involved in the coordination of cell wall expansion and growth in B. subtilis.
-
-
-
The ATPase activity of an ‘essential’ Bacillus subtilis enzyme, YdiB, is required for its cellular function and is modulated by oligomerization
Characterization of ‘unknown’ proteins is one of the challenges of the post-genomic era. Here, we report a study of Bacillus subtilis YdiB, which belongs to an uncharted class of bacterial P-loop ATPases. Precise deletion of the ydiB gene yielded a mutant with much reduced growth rate compared to the wild-type strain. In vitro, purified YdiB was in equilibrium among different forms, monomers, dimers and oligomers, and this equilibrium was strongly affected by salts; high concentrations of NaCl favoured the monomeric over the oligomeric form of the enzyme. Interestingly, the ATPase activity of the monomer was about three times higher than that of the oligomer, and the monomer showed a K m of about 60 μM for ATP and a V max of about 10 nmol min−1 (mg protein)−1 (k cat ∼10 h−1). This low ATPase activity was shown to be specific to YdiB because mutation of an invariant lysine residue in the P-loop motif (K41A) strongly attenuated this rate. This mutant was unable to restore a normal growth phenotype when introduced into a conditional knockout strain for ydiB, showing that the ATPase activity of YdiB is required for the in vivo function of the protein. Oligomerization was also observed with the purified YjeE from Escherichia coli, a YdiB orthologue, suggesting that this property is shared by all members of this family of ATPases. Importantly, dimers of YdiB were also observed in a B. subtilis extract, or when stabilized by formaldehyde cross-linking for YjeE from E. coli, suggesting that oligomerization might regulate the function of this new class of proteins in vivo.
-
-
-
Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis
More LessIndole produced via the β-elimination reaction of l-tryptophan by pyridoxal 5′-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium Porphyromonas gingivalis. A database search showed that the amino acid sequence deduced from pg1401 of P. gingivalis W83 is 45 % identical with that from tnaA of Escherichia coli K-12, which encodes tryptophanase. Replacement of the pg1401 gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of pg1401, demonstrating that the gene is functionally equivalent to tnaA. However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike E. coli tnaA, pg1401 is expressed alone in P. gingivalis and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of P. gingivalis tnaA is controlled by a unique mechanism. Purified recombinant P. gingivalis tryptophanase exhibited the Michaelis–Menten kinetics values K m=0.20±0.01 mM and k cat=1.37±0.06 s−1 in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K+ or Na+, did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5′-phosphate to the enzyme. The enzyme also degraded S-ethyl-l-cysteine and S-methyl-l-cysteine, but not l-alanine, l-serine or l-cysteine.
-
-
-
Evaluation of procedures for outer membrane isolation from Campylobacter jejuni
More LessAlthough infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.
-
-
-
Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803
More LessDownregulation of photosystem I (PSI) content is an essential process for cyanobacteria to grow under high-light (HL) conditions. In a pmgA (sll1968) mutant of Synechocystis sp. PCC 6803, the levels of PSI content, chlorophyll and transcripts of the psaAB genes encoding reaction-centre subunits of PSI could not be maintained low during HL incubation, although the causal relationship among these phenotypes remains unknown. In this study, we modulated the activity of psaAB transcription or that of chlorophyll synthesis to estimate their contribution to the regulation of PSI content under HL conditions. Analysis of the psaAB-OX strain, in which the psaAB genes were overexpressed under HL conditions, revealed that the amount of psaAB transcript could not affect PSI content by itself. Suppression of chlorophyll synthesis by an inhibitor, laevulinic acid, in the pmgA mutant revealed that chlorophyll availability could be a determinant of PSI content under HL. It was also suggested that chlorophyll content under HL conditions is mainly regulated at the level of 5-aminolaevulinic acid synthesis. We conclude that, upon the shift to HL conditions, activities of psaAB transcription and of 5-aminolaevulinic acid synthesis are strictly downregulated by regulatory mechanism(s) independent of PmgA during the first 6 h, and then a PmgA-mediated regulatory mechanism becomes active after 6 h onward of HL incubation to maintain these activities at a low level.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
