- Volume 153, Issue 8, 2007
Volume 153, Issue 8, 2007
- Physiology
-
-
-
Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans
More LessThe physiological role of Candida albicans Cnh1, a member of the Na+/H+ antiporter family, was characterized. Though CaCnh1p had broad substrate specificity and mediated efflux of at least four alkali metal cations upon heterologous expression in Saccharomyces cerevisiae, its presence in C. albicans cells was important especially for potassium homeostasis. In C. albicans, CaCnh1p tagged with GFP was localized in the plasma membrane of cells growing as both yeasts and hyphae. Deletion of CNH1 alleles did not affect tolerance to NaCl, LiCl or CsCl, but resulted in increased sensitivity to high external concentrations of KCl and RbCl. The potassium and rubidium tolerance of a cnh1 homozygous mutant was fully restored by reintegration of CNH1 into the genome. The higher sensitivity of the cnh1/cnh1 mutant to external KCl was caused by a lower K+ efflux from these cells. Together, the functional characterization of the CaCnh1 antiporter in C. albicans revealed that this antiporter plays a significant role in C. albicans physiology. It ensures potassium and rubidium tolerance and participates in the regulation of intracellular potassium content of C. albicans cells.
-
-
- Plant-Microbe Interactions
-
-
-
Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant
More LessMuscodor albus is an endophytic fungus, represented by a number of isolates from tropical tree and vine species in several of the world's rainforests, that produces volatile organic compounds (VOCs) with antibiotic activity. A new isolate, E-6, of this organism, with unusual biochemical and biological properties, has been obtained from the branches of a mature Guazuma ulmifolia (Sterculiaceae) tree growing in a dry tropical forest in SW Ecuador. This unique organism produces many VOCs not previously observed in other M. albus isolates, including butanoic acid, 2-methyl-; butanoic acid, 3-methyl-; 2-butenal, 2-methyl-; butanoic acid, 3-methylbutyl ester; 3-buten-1-ol, 3-methyl; guaiol; 1-octene, 3-ethyl-; formamide, N-(1-methylpropyl); and certain azulene and naphthalene derivatives. Some compounds usually seen in other M. albus isolates also appeared in the VOCs of isolate E-6, including caryophyllene; phenylethyl alcohol; acetic acid, 2-phenylethyl ester; bulnesene; and various propanoic acid, 2-methyl- derivatives. The biological activity of the VOCs of E-6 appears different from the original isolate of this fungus, CZ-620, since a Gram-positive bacterium was killed, and Sclerotinia sclerotiorum and Rhizoctonia solani were not. Scanning electron micrographs of the mycelium of isolate E-6 showed substantial intertwining of the hyphal strands. These strands seemed to be held together by an extracellular matrix accounting for the strong mat-like nature of the mycelium, which easily lifts off the agar surface upon transfer, unlike any other isolate of this fungus. The ITS-5.8S rDNA partial sequence data showed 99 % similarity to the original M. albus strain CZ-620. For the first time, successful establishment of M. albus into its natural host, followed by recovery of the fungus, was accomplished in seedlings of G. ulmifolia. Overall, isolates of M. albus, including E-6, have chemical, biological and structural characteristics that make them potentially useful in medicine, agricultural and industrial applications.
-
-
- Theoretical Microbiology
-
-
-
Modelling the spatial dynamics of plasmid transfer and persistence
More LessBacterial plasmids are extra-chromosomal genetic elements that code for a wide variety of phenotypes in their bacterial hosts and are maintained in bacterial communities through both vertical and horizontal transfer. Current mathematical models of plasmid–bacteria dynamics, based almost exclusively on mass-action differential equations that describe these interactions in completely mixed environments, fail to adequately explain phenomena such as the long-term persistence of plasmids in natural and clinical bacterial communities. This failure is, at least in part, due to the absence of any spatial structure in these models, whereas most bacterial populations are spatially structured in microcolonies and biofilms. To help bridge the gap between theoretical predictions and observed patterns of plasmid spread and persistence, an individual-based lattice model (interacting particle system) that provides a predictive framework for understanding the dynamics of plasmid–bacteria interactions in spatially structured populations is presented here. To assess the accuracy and flexibility of the model, a series of experiments that monitored plasmid loss and horizontal transfer of the IncP-1β plasmid pB10 : : rfp in Escherichia coli K12 and other bacterial populations grown on agar surfaces were performed. The model-based visual patterns of plasmid loss and spread, as well as quantitative predictions of the effects of different initial parental strain densities and incubation time on densities of transconjugants formed on a 2D grid, were in agreement with this and previously published empirical data. These results include features of spatially structured populations that are not predicted by mass-action differential equation models.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)