-
Volume 153,
Issue 6,
2007
Volume 153, Issue 6, 2007
- Pathogens And Pathogenicity
-
-
-
Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei
Burkholderia pseudomallei is a serious bacterial pathogen that can cause a lethal infection in humans known as melioidosis. In this study two of its phospholipase C (PLC) enzymes (Plc-1 and Plc-2) were characterized. Starting with a virulent strain, two single mutants were constructed, each with one plc gene inactivated, and one double mutant with both plc genes inactivated. The single plc mutants exhibited decreased extracellular PLC activity in comparison to the wild-type strain, thereby demonstrating that the two genes encoded functional extracellular PLCs. Growth comparisons between the wild-type and PLC mutants in egg-yolk-supplemented medium indicated that both PLCs contributed to egg-yolk phospholipid utilization. Both PLCs hydrolysed phosphatidylcholine and sphingomyelin but neither was haemolytic for human erythrocytes. Experimental infections of eukaryotic cells demonstrated that Plc-1 itself had no effect on plaque-forming efficiency but it had an additive effect on increasing the efficiency of Plc-2 to form plaques. Only Plc-2 had a significant role in host cell cytotoxicity. In contrast, neither Plc-1 nor Plc-2 appeared to play any role in multinucleated giant cell (MNGC) formation or induction of apoptotic death in the cells studied. These data suggested that PLCs contribute, at least in part, to B. pseudomallei virulence and support the view that Plc-1 and Plc-2 are not redundant virulence factors.
-
-
-
-
Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions
The FimA fimbriae of Porphyromonas gingivalis, the causative agent of periodontitis, have been implicated in various aspects of pathogenicity, such as colonization, adhesion and aggregation. In this study, the four open reading frames (ORF1, ORF2, ORF3 and ORF4) downstream of the fimbrilin gene (fimA) in strain ATCC 33277 were examined. ORF2, ORF3 and ORF4 were demonstrated to encode minor components of the fimbriae and were therefore renamed fimC, fimD and fimE, respectively. Immunoblotting analyses revealed that inactivation of either fimC or fimD by an ermF-ermAM insertion, but not inactivation of ORF1, was accompanied by concomitant loss of the products from the downstream genes, raising the possibility that fimC, fimD and fimE constitute a transcription unit. The fimE mutant produced FimC and FimD, but fimbriae purified from it contained neither protein, suggesting that FimE is required for the assembly of FimC and FimD onto the fimbrilin (FimA) fibre. The fimC, fimD and fimE mutants lost autoaggregation abilities. Fimbriae purified from these three mutants showed attenuated binding activities to glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis and to two extracellular matrix proteins, fibronectin and type I collagen. These results suggest that FimE, as well as FimC and FimD, play critical roles in the adhesive activities of the mature FimA fimbriae in P. gingivalis.
-
-
-
Phenotypic and genotypic characterization of a new fish-virulent Vibrio vulnificus serovar that lacks potential to infect humans
More LessVibrio vulnificus is a bacterial species that is virulent for humans and fish. Human isolates are classified into biotypes 1 and 3 (BT1 and BT3) and fish isolates into biotype 2 (BT2). However, a few human infections caused by BT2 isolates have been reported worldwide (zoonosis). These BT2 human isolates belong to serovar E (SerE), which is also present in diseased fish. The aim of the present work was to characterize a new BT2 serovar [serovar A (SerA)], which emerged in the European fish-farming industry in 2000, by means of phenotypic, serological and genetic [plasmid profiling, ribotyping and random amplified polymorphic DNA (RAPD)] methodologies. The results confirmed that SerA constitutes a homogeneous O-serogroup within the species that shares plasmidic information with SerE. Like SerE, this new serogroup was resistant to fresh fish serum, as well as being highly virulent for fish. In contrast, it was sensitive to human serum and avirulent for mice, even after pretreatment with iron. The two serovars presented different biochemical profiles as well as specific patterns by ribotyping and RAPD analysis. In conclusion, SerA seems to constitute a different clonal group that has recently emerged within the species V. vulnificus, with pathogenic potential for fish but not for humans.
-
-
-
Effect of host fatty acid-binding protein and fatty acid uptake on growth of Chlamydia trachomatis L2
More LessChlamydia trachomatis is an obligate intracellular bacterium and acquires both building blocks and energy from host cells for growth. The fatty acid-binding protein (FABP) plays an important role in uptake of long-chain fatty acids (LCFA) and energy metabolism by eukaryotic cells. The roles of FABP and LCFA in chlamydial infection were evaluated. Infection of liver cells with chlamydial organisms promoted fatty acid uptake by the infected cells, suggesting that LCFA may benefit chlamydial growth. Introduction of FABP into the liver cells not only enhanced fatty acid uptake, but also increased chlamydial intravacuolar replication and maturation. The FABP-enhanced chlamydial intracellular growth was dependent on the host cell uptake of fatty acids. These results have demonstrated that C. trachomatis can productively infect liver cells and utilize FABP-transported LCFA for its own biosynthesis.
-
-
-
Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis
More LessSalmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic enteric pathogen of worldwide importance and pigs are a significant reservoir of human infection. Signature-tagged transposon mutagenesis (STM) was used to identify genes required by S. Typhimurium to colonize porcine intestines. A library of 1045 signature-tagged mutants of S. Typhimurium ST4/74 NalR was screened following oral inoculation of pigs in duplicate. A total of 119 attenuating mutations were identified in 95 different genes, many of which encode known or putative secreted or surface-anchored molecules. A large number of attenuating mutations were located within Salmonella pathogenicity islands (SPI)-1 and -2, confirming important roles for type III secretion systems (T3SS)-1 and -2 in intestinal colonization of pigs. Roles for genes encoded in other pathogenicity islands and islets, including the SPI-6-encoded Saf atypical fimbriae, were also identified. Given the role of secreted factors and the protection conferred against other pathogens by vaccination with extracellular and type III secreted proteins, the efficacy of a secreted protein vaccine from wild-type S. Typhimurium following intramuscular vaccination of pigs was evaluated. Serum IgG responses against type III secreted proteins were induced following vaccination and a significant reduction in faecal excretion of S. Typhimurium was observed in the acute phase of infection compared to mock-vaccinated animals. Vaccination with secreted proteins from an isogenic S. Typhimurium prgH mutant produced comparable levels of protection to vaccination with the preparation from the parent strain, indicating that protection was not reliant on T3SS-1 secreted proteins. The data provide valuable information for the control of Salmonella in pigs.
-
-
-
EscC is a chaperone for the Edwardsiella tarda type III secretion system putative translocon components EseB and EseD
More LessEdwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the ‘translocon’ of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by coils. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of ΔescC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB–LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.
-
- Physiology
-
-
-
NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages
More LessOver the past decade, the flavohaemoglobin Hmp has emerged as the most significant nitric oxide (NO)-detoxifying protein in many diverse micro-organisms, particularly pathogenic bacteria. Its expression in enterobacteria is dramatically increased on exposure to NO and other agents of nitrosative stress as a result of transcriptional regulation of hmp gene expression, mediated by (at least) four regulators. One such regulator, NsrR, has recently been shown to be responsible for repression of hmp transcription in the absence of NO in Escherichia coli and Salmonella, but the roles of other members of this regulon in Salmonella, particularly in surviving nitrosative stresses in vitro and in vivo, have not been elucidated. This paper demonstrates that an nsrR mutant of Salmonella enterica Serovar Typhimurium expresses high levels of Hmp both aerobically and anaerobically, exceeding those that can be elicited in vitro by supplementing media with S-nitrosoglutathione (GSNO). Elevated transcription of ytfE, ygbA, hcp and hcp is also observed, but no evidence was obtained for tehAB upregulation. The hyper-resistance to GSNO of an nsrR mutant is attributable solely to Hmp, since an nsrR hmp double mutant has a wild-type phenotype. However, overexpression of NsrR-regulated genes other than hmp confers some resistance of respiratory oxygen consumption to NO. The ability to enhance, by mutating NsrR, Hmp levels without recourse to exposure to nitrosative stress was used to test the hypothesis that control of Hmp levels is required to avoid oxidative stress, Hmp being a potent generator of superoxide. Within IFN-γ-stimulated J774.2 macrophages, in which high levels of nitrite accumulated (indicative of NO production) an hmp mutant was severely compromised in survival. Surprisingly, under these conditions, an nsrR mutant (as well as an nsrR hmp double mutant) was also disadvantaged relative to the wild-type bacteria, attributable to the combined oxidative effect of the macrophage oxidative burst and Hmp-generated superoxide. This explanation is supported by the sensitivity in vitro of an nsrR mutant to superoxide and peroxide. Fur has recently been confirmed as a weak repressor of hmp transcription, and a fur mutant was also compromised for survival within macrophages even in the absence of elevated NO levels in non-stimulated macrophages. The results indicate the critical role of Hmp in protection of Salmonella from nitrosative stress within and outside macrophages, but also the key role of transcriptional regulation in tuning Hmp levels to prevent exacerbation of the oxidative stress encountered in macrophages.
-
-
-
-
Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter
This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K s) of a reference strain was about 15 μM in glucose-limited chemostat culture. Disruption of mstA resulted in a two- to fivefold reduction in affinity for glucose and led to expression of a low-affinity glucose transport gene, mstC, at high dilution rate. The effect of mstA disruption was more subtle at low and intermediate dilution rates, pointing to some degree of functional redundancy in the high-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h−1, 0.14 h−1 and 0.20 h−1). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays, and analysed for expression of mstA and two other transporter genes, mstC and mstF. The capacity for glucose uptake (v max) of both strains was significantly reduced at low dilution rate. The glucose uptake assays revealed complex uptake kinetics. This impeded accurate determination of maximum specific uptake rates (v max) and apparent affinity constants (
) at intermediate and high dilution rate. Two high-affinity glucose transporter genes, mstA and mstF, were expressed at all three dilution rates in chemostat cultures, in contrast to batch culture, where only mstC was expressed. Expression patterns of the three transporter genes suggested differential regulation and functionality of their products.
-
-
-
Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth
Ubiquinones (UQs) and menaquinones (MKs) perform distinct functions in Escherichia coli. Whereas, in general, UQs are primarily involved in aerobic respiration, the MKs serve as electron carriers in anaerobic respiration. Both UQs and MKs can accept electrons from various dehydrogenases, and may donate electrons to different oxidases. Hence, they play a role in maintaining metabolic flexibility in E. coli whenever this organism has to adapt to conditions with changing redox characteristics, such as oxygen availability. Here, the authors report on the changes in both the size and the redox state of the quinone pool when the environment changes from being well aerated to one with low oxygen availability. It is shown that such transitions are accompanied by a rapid increase in the demethylmenaquinone pool, and a slow increase in the MK pool. Moreover, in exponentially growing cultures in a well-shaken Erlenmeyer flask, it is observed that the assumption of a pseudo-steady state does not hold with respect to the redox state of the quinone pool.
-
-
-
Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria
More LessModified β-cyclodextrins have been shown previously to enhance sterol conversion to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by growing Mycobacterium spp. The enhancement effect was mainly attributed to steroid solubilization by the formation of inclusion complexes with modified cyclodextrins. In this work, the influence of randomly methylated β-cyclodextrin (MCD) on the growth, AD- and ADD-producing activity, cell wall (CW) composition and ultrastructure of sterol-transforming Mycobacterium sp. VKM Ac-1816D was studied. The specific growth rate of the strain on glycerol increased in the presence of MCD (20–100 mM). Washed cells grown in the presence of MCD (20–40 mM) expressed 1.6-fold higher ADD-producing activity than did the cells grown without MCD, and their adhesiveness differed. Electron microscopy showed MCD-mediated CW exfoliation and accumulation of membrane-like structures outside the cells, while preserving cells intact. The analysis of CW composition revealed both a decrease in the proportion of extractable lipids and a considerable shift in fatty acid profile resulting from MCD action. The MCD-mediated enhancement of mycolic and fatty acids content was observed outside the cells. The total secreted protein level rose 2.4-fold, and the extracellular 3-hydroxysteroid oxidase activity 3.2-fold. The composition of the CW polysaccharide was not altered, while the overall proportion of the carbohydrates in the CW of the MCD-exposed mycobacteria increased. The results showed that the multiple mechanisms of MCD-mediated intensification of sterol to AD(D) conversion by mycobacteria include not only solubilization of steroids, but also the increase of CW permeability for both steroids and soluble nutrients, disorganization of the lipid bilayer and the release of steroid-transforming enzymes weakly associated with the CW.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
