-
Volume 153,
Issue 11,
2007
Volume 153, Issue 11, 2007
- Pathogens And Pathogenicity
-
-
-
Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells
More LessThe human pathogen Mycoplasma pneumoniae can cause atypical pneumonia through adherence to epithelial cells in the respiratory tract. The major immunogenic protein, P1, participates in the attachment of the bacteria to the host cells. To investigate the adhesion properties of P1, a recombinant protein (rP1-II) covering amino acids 1107–1518 of the P1 protein was produced. This protein inhibited the adhesion of M. pneumoniae to human HEp-2 cells, as visualized in a competitive-binding assay using immunofluorescence microscopy. Previous studies have shown that mAbs that recognize two epitopes in this region of P1 also reduce M. pneumoniae adhesion. Therefore, peptides covering these epitopes, of 8 and 13 aa, respectively, were synthesized to further investigate the adhesion region. None of these synthetic peptides reduced the binding of M. pneumoniae to the receptors on the host cells. Instead, 10 overlapping synthetic peptides covering the whole of rP1-II were evaluated in the competitive-binding assay using immunofluorescence microscopy. A reduction in the number of M. pneumoniae microcolonies was seen, which was confirmed for five peptides using a POLARstar OPTIMA reader to measure fluorescence intensity. The number of M. pneumoniae microcolonies adhering to the host cells was significantly reduced by these five peptides. Further investigations showed that inhibiting peptide 7 (amino acids 1347–1396) of the major adhesin protein P1 bound directly to host receptors, suggesting that the observed M. pneumoniae-inhibiting peptides occupied HEp-2 receptors, which are otherwise available for P1-mediated M. pneumoniae adhesion.
-
-
-
-
Protein FOG is a moderate inducer of MIG/CXCL9, and group G streptococci are more tolerant than group A streptococci to this chemokine's antibacterial effect
More LessStreptococcus dysgalactiae subsp. equisimilis (group G streptococci; GGS) cause disease in humans but are often regarded as commensals in comparison with Streptococcus pyogenes (group A streptococci; GAS). The current study investigated the degree and kinetics of the innate immune response elicited by the two species. This was assessed as expression of the chemokine MIG/CXCL9 and bacterial susceptibility to its bactericidal effect. No significant difference in MIG/CXCL9 expression from THP-1 or Detroit 562 cells was observed when comparing whole GGS or GAS as stimuli. The study demonstrates that protein FOG was released from the bacterial surface directly and by neutrophil elastase. Expression of MIG/CXCL9 following stimulation with soluble M proteins of the two species (the recently described protein FOG of GGS and protein M1 of GAS) was reduced for protein FOG in both the monocytic and the epithelial cell line. When the antibacterial effects of MIG/CXCL9 were examined in conditions of increased ionic strength, MIG/CXCL9 killed GAS more efficiently than GGS. Also in the absence of MIG/CXCL9, GGS were more tolerant to increased salt concentrations than GAS. In summary, both GGS and GAS evoke MIG/CXCL9 expression but they differ in susceptibility to its antibacterial effects. This may in part explain the success of GGS as a commensal and its potential as a pathogen.
-
-
-
Uncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques
More LessUncultivated clones BU045 and BU063 and Tannerella forsythia, a ‘consensus periodontal pathogen’, are the closest known relatives within the genus Tannerella. They have been described to inhabit different ecological niches of the human oral cavity. In this study, fluorescent in situ hybridization (FISH) and immunofluorescence were combined to investigate the prevalence and abundance of BU045 and BU063 in comparison to T. forsythia in plaques from gingivitis, necrotizing ulcerative gingivitis (NUG) and chronic periodontitis. Phylotype-specific FISH probes identified BU045 and BU063 as elongated thin rods with a segmented structure. Two structurally similar and previously unknown, rare phylotypes (127+ and 997+) were also identified due to partial 16S rRNA sequence identity with T. forsythia. In gingivitis, NUG and periodontitis patients, BU045, BU063, 127+, 997+ and T. forsythia were detected with prevalences of 50/83/71/14 and 81 %, 100/100/86/17 and 53 %, and 100/100/12/0 and 100 %, respectively. Supragingivally, colonization density of all five organisms was generally low, rarely exceeding 0.1 % of the total biota. In periodontal pocket samples, however, cell numbers of T. forsythia, but not of the uncultivable phylotypes, were greatly elevated. Our data demonstrate that Tannerella phylotypes BU045, BU063, 127+ and 997+ consist of long slim rods with segments, which, with respect to FISH stainability, often behaved as independent units. The phylotypes are frequent but low-level colonizers of various periodontal disease-associated plaques. Their apparent inability to proliferate to high density seems to exclude any relevance for the pathogenesis of periodontal diseases.
-
-
-
Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions
Legionella pneumophila is an opportunistic pathogen that in the environment colonizes biofilms and replicates within amoebae. The bacteria employ the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system to grow intracellularly in a specific vacuole. Using Acanthamoeba castellanii as a host cell, we have previously identified lcsC (Legionella cytotoxic suppressor), a paralogue of the lipid A disaccharide synthase lpxB, as a cytotoxic factor of L. pneumophila. A bioinformatic analysis of the genome revealed that L. pneumophila is unique in harbouring two paralogues of lpxB and two and three paralogues of the lipid A biosynthesis acyltransferases lpxA and lpxD, respectively. LcsC (lpxB1) forms a transcriptional unit with gnnA, encoding a putative UDP-GlcNAc oxidase in the biosynthetic pathway leading to 3-aminoglucosamine analogues of lipid A. LpxB2 clusters with lpxD2, lpxA2 and lpxL paralogues, encoding secondary acyltransferases. LcsC/lpxB1 and lpxB2 were found to partially complement the growth defect of an Escherichia coli lpxB conditional mutant strain, indicating that both corresponding enzymes possess lipid A disaccharide synthase activity. The two L. pneumophila lpxB paralogues are not functionally equivalent, since expression of lcsC/lpxB1 but not lpxB2 in an L. pneumophila icmG mutant is cytotoxic for A. castellanii, and LPS purified from the two strains triggers CD14-dependent tumour necrosis factor (TNF)α production by macrophages with a different potency. The lpxB and lpxA paralogues are expressed under various growth conditions, including broth, biofilms and in A. castellanii. While the flagellar gene flaA is mainly expressed in late stationary phase, the lpxB and lpxA paralogues are preferentially expressed in the exponential and early stationary phases. Upon exposure to hypotonic stress and nutrient deprivation, lpxA1, and to a lesser extent lcsC/lpxB1, is upregulated. The differential regulation of lpxB or lpxA paralogues in response to changing environmental conditions might allow L. pneumophila to adapt its lipid A structure.
-
- Physiology
-
-
-
Propionate inactivation of butane monooxygenase activity in ‘Pseudomonas butanovora’: biochemical and physiological implications
More LessButane monooxygenase (BMO) catalyses the oxidation of alkanes to alcohols in the alkane-utilizing bacterium ‘Pseudomonas butanovora’. Incubation of alkane-grown ‘P. butanovora’ with butyrate or propionate led to irreversible time- and O2-dependent loss of BMO activity. In contrast, BMO activity was unaffected by incubation with lactate or acetate. Chloramphenicol inhibited the synthesis of new BMO, but did not change the kinetics of propionate-dependent BMO inactivation, suggesting that the propionate effect was not simply due to it acting as a repressor of BMO transcription. BMO was protected from propionate-dependent inactivation by the presence of its natural substrate, butane. Although both the time and O2 dependency of propionate inactivation of BMO imply that propionate might be a suicide substrate, no evidence was obtained for BMO-dependent propionate consumption, or 14C labelling of BMO polypeptides by [2-14C]propionate during inactivation. Propionate-dependent BMO inactivation was also explored in mutant strains of ‘P. butanovora’ containing single amino acid substitutions in the α-subunit of the BMO hydroxylase. Propionate-dependent BMO inactivation in two mutant strains with amino acid substitutions close to the catalytic site differed from wild-type (one was more sensitive and the other less), providing further evidence that propionate-dependent inactivation involves interaction with the BMO catalytic site. A putative model is presented that might explain propionate-dependent inactivation of BMO when framed within the context of the catalytic cycle of the closely related enzyme, soluble methane monooxygenase.
-
-
-
-
Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2
More LessThis study was designed to characterize naphthalene metabolism in Polaromonas naphthalenivorans CJ2. Comparisons were completed using two archetypal naphthalene-degrading bacteria: Pseudomonas putida NCIB 9816-4 and Ralstonia sp. strain U2, representative of the catechol and gentisate pathways, respectively. Strain CJ2 carries naphthalene catabolic genes that are homologous to those in Ralstonia sp. strain U2. Here we show that strain CJ2 metabolizes naphthalene via gentisate using respirometry, metabolite detection by GC-MS and cell-free enzyme assays. Unlike P. putida NCIB 9816-4 or Ralstonia sp. strain U2, strain CJ2 did not grow in minimal medium saturated with naphthalene. Growth assays revealed that strain CJ2 is inhibited by naphthalene concentrations of 78 μM (10 p.p.m.) and higher, and the inhibition of growth is accompanied by the accumulation of orange-coloured, putative naphthalene metabolites in the culture medium. Loss of cell viability coincided with the appearance of the coloured metabolites, and analysis by HPLC suggested that the accumulated metabolites were 1,2-naphthoquinone and its unstable auto-oxidation products. The naphthoquinone breakdown products accumulated in inhibited, but not uninhibited, cultures of strain CJ2. Furthermore, naphthalene itself was shown to directly inhibit growth of a regulatory mutant of strain CJ2 that is unable to metabolize naphthalene. These results suggest that, despite being able to use naphthalene as a carbon and energy source, strain CJ2 must balance naphthalene utilization against two types of toxicity.
-
-
-
Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes
More LessBacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c-type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.
-
-
-
Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium
More LessPseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on mucous plugs in the lungs of cystic fibrosis (CF) patients, resulting in chronic infections. Pulmonary P. aeruginosa isolates often display a mucoid (alginate-producing) phenotype, whereas non-mucoid strains are generally associated with acute infections. We characterized the cytosolic proteomes of biofilm-associated and planktonic forms of a CF pulmonary isolate, P. aeruginosa FRD1, and a non-mucoid strain, PAO1. Since Ca2+ metabolism is altered in CF pulmonary fluids, we also analysed the effect of Ca2+ on the proteome responses of these strains. Both strains altered the abundances of 40–60 % of their proteins in response to biofilm growth and/or [Ca2+]. Differentially expressed proteins clustered into 12 groups, based on their abundance profiles. From these clusters, 146 proteins were identified by using MALDI-TOF/TOF mass spectrometry. Similarities as well as strain-specific differences were observed. Both strains altered the production of proteins involved in iron acquisition, pyocyanin biosynthesis, quinolone signalling and nitrogen metabolism, proteases, and proteins involved in oxidative and general stress responses. Individual proteins from these classes were highly represented in the biofilm proteomes of both strains. Strain-specific differences concerned the proteins within these functional groups, particularly for enzymes involved in iron acquisition and polysaccharide metabolism, and proteases. The results demonstrate that a mucoid CF isolate of P. aeruginosa responds to biofilm-associated growth and [Ca2+] in a fashion similar to strain PAO1, but that strain-specific differences may allow this CF isolate to successfully colonize the pulmonary environment.
-
- Theoretical Microbiology
-
-
-
Senescence can explain microbial persistence
More LessIt has been known for many years that small fractions of persister cells resist killing in many bacterial colony–antimicrobial confrontations. These persisters are not believed to be mutants. Rather it has been hypothesized that they are phenotypic variants. Current models allow cells to switch in and out of the persister phenotype. Here, a different explanation is suggested for persistence, namely senescence. Using a mathematical model including age structure, it is shown that senescence provides a natural explanation for persistence-related phenomena, including the observations that the persister fraction depends on growth phase in batch culture and dilution rate in continuous culture.
-
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
