- Volume 151, Issue 3, 2005
Volume 151, Issue 3, 2005
- Genes And Genomes
-
-
-
Construction of a combined physical and genetic map of the chromosome of Lactobacillus acidophilus ATCC 4356 and characterization of the rRNA operons
More LessThe combination of PFGE and hybridization approaches was used to study the genome of Lactobacillus acidophilus neotype strain ATCC 4356. PFGE analysis of chromosomal DNA after digestion with each of the rare-cutting restriction enzymes I-CeuI, NotI, CspI, SmaI, ApaI and SgrAI allowed the size of the circular chromosome of L. acidophilus to be estimated at 2·061 Mbp. The physical map contained 86 restriction sites for the six enzymes employed, with intervals between the sites varying from 1 to 88 kbp (∼0·05–4·3 % of the chromosome). Based on the physical map, a genetic map was constructed via Southern blot analyses of L. acidophilus DNA using specific gene probes. A total of 73 probes representing key genes, including 12 rRNA (rrn) genes, were positioned on the latter map. Mapping analysis also indicated the presence of four rrn operons (rrnA–D) on the chromosome, each containing a single copy of each of the three rrn genes 16S (rrl), 23S (rrs) and 5S (rrf). Operon rrnD was inverted in orientation with respect to the others and contained a long 16S–23S intergenic spacer region with tRNAIle and tRNAAla genes, whereas the other operons contained a short spacer lacking any tRNA genes. The high-resolution physical/genetic map constructed in this study provides a platform for genomic and genetic studies of Lactobacillus species and for improving industrial and probiotic strains.
-
-
-
-
The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents
More LessA 7·5 kbp cryptic plasmid is found in almost all isolates of Chlamydia trachomatis. Real-time PCR assays, using TaqMan chemistry, were set up to quantify accurately both the chlamydial plasmid and the single copy, chromosomal omcB gene in the infectious, elementary bodies (EBs) of C. trachomatis L1 440. Plasmid copy number was also determined in the EBs of six other lymphogranuloma venereum (LGV) isolates (serovars L1–L3), ten trachoma isolates (serovars A–C) and nine urogenital isolates (serovars D–J). The results indicated an average plasmid copy number of 4·0±0·8 (mean±95 % confidence interval) plasmids per chromosome. During the chlamydial developmental cycle, up to 7·6 plasmids per chromosome were detected, indicating an increased plasmid copy number in the actively replicating reticulate bodies. Attempts to eliminate the plasmid from strain L1 440 using the plasmid-curing agents ethidium bromide, acridine orange or imipramine/novobiocin led to a paradoxical increase in plasmid copy number. It is speculated that the stress induced by chemical curing agents may stimulate the activity of plasmid-encoded replication (Rep) proteins. In contrast to C. trachomatis, only a single isolate of Chlamydophila pneumoniae bears a plasmid. C. pneumoniae strain N16 supports a 7·4 kbp plasmid in which ORF1, encoding one of the putative Rep proteins, is disrupted by a deletion and split into two smaller ORFs. Similar assay techniques revealed 1·3±0·2 plasmids per chromosome (mean±95 % confidence interval) in EBs of this strain. These findings are in agreement with the hypothesis that the ORF1-encoded protein is involved in, but not essential for, plasmid replication and control of copy number.
-
-
-
Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding Shiga toxin 1
More LessThe sequence of 50 625 bp of chromosomal DNA derived from Shiga-toxin (Stx)-producing Escherichia coli (STEC) O111 : H− strain 1639/77 was determined. This DNA fragment contains the cryptic Stx1-encoding prophage CP-1639 and its flanking chromosomal regions. The genome of CP-1639 basically resembles that of lambdoid phages in structure, but contains three IS629 elements, one of which disrupts the gene of a tail fibre component. The prophage genome lacks parts of the recombination region including integrase and excisionase genes. Moreover, a capsid protein gene is absent. CP-1639 is closely associated with an integrase gene of an ancient integrative element. This element consists of three ORFs of unknown origin and a truncated integrase gene homologous to intA of CP4-57. By PCR analysis and sequencing, it was shown that this integrative element is present in a number of non-O157 STEC serotypes and in non-STEC strains, where it is located at the 3′-end of the chromosomal ssrA gene. Whereas in most E. coli O111 : H− strains, prophages are inserted in this site, E. coli O26 strains contain the integrative element not connected to a prophage. In E. coli O103 strains, the genetic structure of this region is variable. Comparison of DNA sequences of this particular site in E. coli O157 : H7 strain EDL933, E. coli O111 : H− strain 1639/77 and E. coli K-12 strain MG1655 showed that the ssrA gene is associated in all cases with the presence of foreign DNA. The results of this study have shown that the cryptic prophage CP-1639 is associated with an integrative element at a particular site in the E. coli chromosome that possesses high genetic variability.
-
-
-
The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation
More LessPseudomonas aeruginosa is a Gram-negative bacterium associated with nosocomial infections and cystic fibrosis. Chronic bacterial infections are increasingly associated with the biofilm lifestyle in which microcolonies are embedded in an extracellular matrix. Screening procedures for identifying biofilm-deficient strains have allowed the characterization of several key determinants involved in this process. Biofilm-deficient P. aeruginosa PAK strains affected in a seven-gene cluster called pel were characterized. The pel genes encode proteins with similarity to components involved in polysaccharide biogenesis, of which PelF is a putative glycosyltransferase. PelG was also identified as a putative component of the polysaccharide transporter (PST) family. The pel genes were previously identified in the P. aeruginosa PA14 strain as required for the production of a glucose-rich matrix material involved in the formation of a thick pellicle and resistant biofilm. However, in PA14, the pel mutants have no clear phenotype in the initiation phase of attachment. It was shown that pel mutations in the PAK strain had little influence on biofilm initiation but, as in PA14, appeared to generate the least robust and mature biofilms. Strikingly, by constructing pel mutants in a non-piliated P. aeruginosa PAK strain, an unexpected effect of the pel mutation in the early phase of biofilm formation was discovered, since it was observed that these mutants were severely defective in the attachment process on solid surfaces. The pel gene cluster is conserved in other Gram-negative bacteria, and mutation in a Ralstonia solanacearum pelG homologue, ragG, led to an adherence defect.
-
- Pathogens And Pathogenicity
-
-
-
Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis
More LessSerum resistance is a crucial virulence factor for the development of systemic infections, including bacteraemia, by many pathogenic bacteria. Salmonella enterica serovar Choleraesuis is an important enteric pathogen that causes serious systemic infections in swine and humans. Here, it was found that, when introduced into Escherichia coli, a recombinant plasmid carrying the pagC gene from a plasmid-based genomic library of S. enterica serovar Choleraesuis conferred a high-level resistance to the bactericidal activity of pooled normal swine serum. The resistance was equal to the level conferred by rck, a gene encoding a 17 kDa outer-membrane protein which promotes the serum resistance phenotype in S. enterica serovar Typhimurium. Insertional mutagenesis of the cloned pagC gene generated a mutation that resulted in the loss of the serum resistance phenotype in E. coli. When this mutation was introduced into the chromosome of S. enterica serovar Choleraesuis by homology recombination with the wild-type allele, the resulting strain could not produce PagC, and it showed a decreased level of resistance to complement-mediated killing. The mutation could be restored by introduction of the intact pagC gene on a plasmid, but not by introduction of the point-mutated pagC gene. In addition, PagC was able to promote serum resistance in the S. enterica serovar Choleraesuis LPS mutant strain, which is highly sensitive to serum killing. Although PagC is not thought to confer serum resistance directly, these results strongly suggest that PagC is an important outer-membrane protein that plays an important role in the serum resistance of S. enterica serovar Choleraesuis.
-
-
-
-
Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. The role of a homologue of the negative transcriptional regulatory protein HspR, which in other organisms participates in the control of the heat-shock response, was investigated. Following inactivation of hspR in C. jejuni, members of the HspR regulon were identified by DNA microarray transcript profiling. In agreement with the predicted role of HspR as a negative regulator of genes involved in the heat-shock response, it was observed that the transcript amounts of 13 genes were increased in the hspR mutant, including the chaperone genes dnaK, grpE and clpB, and a gene encoding the heat-shock regulator HrcA. Proteomic analysis also revealed increased synthesis of the heat-shock proteins DnaK, GrpE, GroEL and GroES in the absence of HspR. The altered expression of chaperones was accompanied by heat sensitivity, as the hspR mutant was unable to form colonies at 44 °C. Surprisingly, transcriptome analysis also revealed a group of 17 genes with lower transcript levels in the hspR mutant. Of these, eight were predicted to be involved in the formation of the flagella apparatus, and the decreased expression is likely to be responsible for the reduced motility and ability to autoagglutinate that was observed for hspR mutant cells. Electron micrographs showed that mutant cells were spiral-shaped and carried intact flagella, but were elongated compared to wild-type cells. The inactivation of hspR also reduced the ability of Campylobacter to adhere to and invade human epithelial INT-407 cells in vitro, possibly as a consequence of the reduced motility or lower expression of the flagellar export apparatus in hspR mutant cells. It was concluded that, in C. jejuni, HspR influences the expression of several genes that are likely to have an impact on the ability of the bacterium to successfully survive in food products and subsequently infect the consumer.
-
-
-
Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori
More LessChanges in the repeats associated with the recently redefined repertoire of 31 phase-variable genes in Helicobacter pylori were investigated following murine gastric colonization for up to one year in three unrelated H. pylori strains. Between the beginning and end of the experimental period, changes were seen in ten genes (32 %), which would alter gene expression in one or more of the three strains studied. For those genes that showed repeat length changes at the longest time points, intermediate time points showed differences between the rates of change for different functional groups of genes. Genes most likely to be associated with immediate niche fitting changed most rapidly, including phospholipase A (pldA) and LPS biosynthetic genes. Other surface proteins, which may be under adaptive immune selection, changed more slowly. Restriction-modification genes showed no particular temporal pattern. The number of genes that phase varied during adaptation to the murine gastric environment correlated inversely with their relative fitness as previously determined in this murine model of colonization. This suggests a role for these genes in determining initial fitness for colonization as well as in subsequent niche adaptation. In addition, a coding tandem repeat within a phase-variable gene which does not control actual gene expression was also investigated. This repeat was found to vary in copy number during colonization. This suggests that changes in the structures encoded by tandem repeats may also play a role in altered protein functions and/or immune evasion during H. pylori colonization.
-
-
-
The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells
Members of the ferritin-like Dps protein family are found in a number of bacterial species, where they demonstrate the potential to bind iron, and have been implicated in tolerance to oxidative stress. In this study of the food-borne pathogen Listeria monocytogenes, the fri gene encoding a Dps homologue was deleted, and, compared to wild-type cells, it was found that the resulting mutant was less resistant to hydrogen peroxide, and demonstrated reduced survival following long-term (7–11 days) incubation in laboratory media. In view of this, it is shown that fri gene expression is controlled by the hydrogen peroxide regulator PerR, as well as the general stress sigma factor σ B. When fri mutant cells were transferred to iron-limiting conditions, growth was retarded relative to wild-type cells, indicating that Fri may be required for iron storage. This notion is supported by the observation that the L. monocytogenes genome appears not to encode other ferritin-like proteins. Given the role of Fri in resistance to oxidative stress, and growth under iron-limiting conditions, the ability of the fri mutant to infect mice was examined. When injected by the intraperitoneal route, the fri mutant demonstrated a reduced capacity to proliferate in the organs of infected mice relative to the wild-type, whereas when the bacteria were supplied intravenously this effect was mitigated. In addition, the mutant was impaired in its ability to survive and grow in J774.A1 mouse macrophage cells. Thus, the data suggest that Fri contributes to the ability of L. monocytogenes to survive in environments where oxidative stress and low iron availability may impede bacterial proliferation.
-
-
-
The vlhA loci of Mycoplasma synoviae are confined to a restricted region of the genome
More LessMycoplasma synoviae, a major pathogen of poultry, contains a single expressed, full-length vlhA gene encoding its haemagglutinin, and a large number of vlhA pseudogenes that can be recruited by multiple site-specific recombination events to generate chimaeric variants of the expressed gene. The position and distribution of the vlhA pseudogene regions, and their relationship with the expressed gene, have not been investigated. To determine the relationship between these regions, a physical map of the M. synoviae genome was constructed using the restriction endonucleases SmaI, I-CeuI, BsiWI, ApaI and XhoI and radiolabelled probes for rrnA, recA and tufA. A cloned fragment encoding the unique portion of the expressed vlhA gene and two PCR products containing conserved regions of the ORF 3 and ORF 6 vlhA pseudogenes were used to locate the regions containing these genes on the map. The chromosome of M. synoviae was found to be 890·4 kb and the two rRNA operons were in the same orientation. Both the expressed vlhA gene and the vlhA pseudogenes were confined to the same 114 kb region of the chromosome. These findings indicate that, unlike Mycoplasma gallisepticum, in which the vlhA genes are located in several loci around the chromosome and in which antigenic variation is generated by alternating transcription of over 40 translationally competent genes, M. synoviae has all of the vlhA sequences clustered together, suggesting that close proximity is needed to facilitate the site-specific recombinations used to generate diversity in the expressed vlhA gene.
-
-
-
Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri
Proteins directly involved in entry and dissemination of Shigella flexneri into epithelial cells are encoded by a virulence plasmid of 200 kb. A 30-kb region (designated the entry region) of this plasmid encodes components of a type III secretion (TTS) apparatus, substrates of this apparatus and their dedicated chaperones. During growth of bacteria in broth, expression of these genes is induced at 37 °C and the TTS apparatus is assembled in the bacterial envelope but is not active. Secretion is activated upon contact of bacteria with host cells and is deregulated in an ipaB mutant. The plasmid encodes four transcriptional regulators, VirF, VirB, MxiE and Orf81. VirF controls transcription of virB, whose product is required for transcription of entry region genes. MxiE, with the chaperone IpgC acting as a co-activator, controls expression of several effectors that are induced under conditions of secretion. Genes under the control of Orf81 are not known. The aim of this study was to define further the repertoires of virulence plasmid genes that are under the control of (i) the growth temperature, (ii) each of the known virulence plasmid-encoded transcriptional regulators (VirF, VirB, MxiE and Orf81) and (iii) the activity of the TTS apparatus. Using a macroarray analysis, the expression profiles of 71 plasmid genes were compared in the wild-type strain grown at 37 and 30 °C and in virF, virB, mxiE, ipaB, ipaB mxiE and orf81 mutants grown at 37 °C. Many genes were found to be under the control of VirB and indirectly of VirF. No alteration of expression of any gene was detected in the orf81 mutant. Expression of 13 genes was increased in the secretion-deregulated ipaB mutant in an MxiE-dependent manner. On the basis of their expression profile, substrates of the TTS apparatus can be classified into three categories: (i) those that are controlled by VirB, (ii) those that are controlled by MxiE and (iii) those that are controlled by both VirB and MxiE. The differential regulation of expression of TTS effectors in response to the TTS apparatus activity suggests that different effectors might be required at different times following contact of bacteria with host cells.
-
- Physiology
-
-
-
Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone
More LessMycobacterium smegmatis is able to grow and survive at acidic pH, and exhibits intracellular pH homeostasis under these conditions. In this study, the authors have identified low proton permeability of the cytoplasmic membrane, and high cytoplasmic buffering capacity, as determinants of intrinsic acid resistance of M. smegmatis. To identify genes encoding proteins involved in protecting cells from acid stress, a screening method was developed using the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). CCCP was used to suppress intrinsic acid resistance of M. smegmatis. The screen involved exposing cells to pH 5·0 in the presence of CCCP, and survivors were rescued at various time intervals on solid medium at pH 7·5. Cells capable of responding to intracellular acidification (due to CCCP-induced proton equilibration) will survive longer under these conditions than acid-sensitive cells. From a total pool of 5000 transposon (Tn611) insertion mutants screened, eight acid-sensitive M. smegmatis mutants were isolated. These acid-sensitive mutants were unable to grow at pH 5·0 in the presence of 1–5 μM CCCP, a concentration not lethal to the wild-type strain mc2155. The DNA flanking the site of Tn611 was identified using marker rescue in Escherichia coli, and DNA sequencing to identify the disrupted locus. Acid-sensitive mutants of M. smegmatis were disrupted in genes involved in phosphonate/phosphite assimilation, methionine biosynthesis, the PPE multigene family, xenobiotic-response regulation and lipid biosynthesis. Several of the acid-sensitive mutants were also defective in stationary-phase survival, suggesting that overlapping stress protection systems exist in M. smegmatis.
-
-
-
-
Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state
More LessThe Escherichia coli K-12 strain TG1 was grown at 28 °C in aerobic glucose-limited continuous cultures at dilution rates ranging from 0·044 to 0·415 h−1. The rates of biomass formation, the specific rates of glucose, ammonium and oxygen uptake and the specific carbon dioxide evolution rate increased linearly with the dilution rate up to 0·3 h−1. At dilution rates between 0·3 h−1 and 0·4 h−1, a strong deviation from the linear increase to lower specific oxygen uptake and carbon dioxide evolution rates occurred. The biomass formation rate and the specific glucose and ammonium uptake rates did not deviate that strongly from the linear increase up to dilution rates of 0·4 h−1. An increasing percentage of glucose carbon flow towards biomass determined by a reactor mass balance and a decreasing specific ATP production rate concomitant with a decreasing adenylate energy charge indicated higher energetic efficiency of carbon substrate utilization at higher dilution rates. Estimation of metabolic fluxes by a stoichiometric model revealed an increasing activity of the pentose phosphate pathway and a decreasing tricarboxylic acid cycle activity with increasing dilution rates, indicative of the increased NADPH and precursor demand for anabolic purposes at the expense of ATP formation through catabolic activities. Thus, increasing growth rates first result in a more energy-efficient use of the carbon substrate for biomass production, i.e. a lower portion of the carbon substrate is channelled into the respiratory, energy-generating pathway. At dilution rates above 0·4 h−1, close to the wash-out point, respiration rates dropped sharply and accumulation of glucose and acetic acid was observed. Energy generation through acetate formation yields less ATP compared with complete oxidation of the sugar carbon substrate, but is the result of maximized energy generation under conditions of restrictions in the tricarboxylic acid cycle or in respiratory NADH turnover. Thus, the data strongly support the conclusion that, in aerobic glucose-limited continuous cultures of E. coli TG1, two different carbon limitations occur: at low dilution rates, cell growth is limited by cell-carbon supply and, at high dilution rates, by energy-carbon supply.
-
-
-
Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour
More LessThe metabolic dynamics of the Escherichia coli K-12 strain TG1 to feast and famine were studied in glucose-limited steady-state cultures by up- and downshifts of the dilution rate, respectively. An uncoupling of anabolic and catabolic rates was observed upon dilution rate upshifts, apparent through immediately increased glucose uptake rates which were not accompanied by an immediate increase of the growth rate but instead resulted in the temporary excretion of methylglyoxal, d- and l-lactate, pyruvate and, after a delay, acetate. The energetic state of the cell during the transient was followed by measuring the adenylate energy charge, which increased within 2 min after the upshift and declined thereafter until a new steady-state level was reached. In the downshift experiment, the adenylate energy charge behaved inversely; no by-products were formed, indicating a tight coupling of anabolism and catabolism. Both dilution rate shifts were accompanied by an instantaneous increase of cAMP, presaging the subsequent changes in metabolic pathway utilization. Intracellular key metabolites of the Embden–Meyerhof–Parnas (EMP) pathway were measured to evaluate the metabolic perturbation during the upshift. Fructose 1,6-diphosphate (FDP) and dihydroxyacetone phosphate (DHAP) increased rapidly after the upshift, while glyceraldehyde 3-phosphate decreased. It is concluded that this imbalance at the branch-point of FDP induces the methylglyoxal (MG) pathway, a low-energy-yielding bypass of the lower EMP pathway, through the increasing level of DHAP. MG pathway activation after the upshift was simulated by restricting anabolic rates using a stoichiometry-based metabolic model. The metabolic model predicted that low-energy-yielding catabolic pathways are utilized preferentially in the transient after the upshift. Upon severe dilution rate upshifts, an oscillatory behaviour occurred, apparent through long-term oscillations of respiratory activity, which started when the cytotoxic compound MG reached a threshold concentration of 1·5 mg l−1 in the medium.
-
-
-
Influence of flavomycin on ruminal fermentation and microbial populations in sheep
More LessFlavomycin is a phosphoglycolipid antibiotic that promotes growth in ruminants. The aim of this study was to characterize the effects of flavomycin on ruminal micro-organisms and their metabolic consequences. In sheep receiving a mixed grass hay/concentrate diet, inclusion of 20 mg flavomycin day−1 decreased ruminal ammonia and total volatile fatty acid concentrations (P<0·001), but the acetate : propionate ratio was unchanged. Ruminal pH tended to be lower with flavomycin, and ammonia-production rates of ruminal digesta from control animals measured in vitro tended to be inhibited by flavomycin. Pure-culture studies indicated that anaerobic fungi, protozoa and most bacterial species were insensitive to flavomycin. Fusobacterium necrophorum was the most sensitive species tested, along with some high-activity ammonia-producing (HAP) species. Effects on F. necrophorum in vivo were inconsistent due to large inter-animal variation. HAP numbers appeared to be decreased. Changes in the rumen bacterial-community structure were assessed by using denaturing-gradient gel electrophoresis (DGGE) analysis of rumen digesta 16S rRNA. DGGE profiles differed from animal to animal, but remained consistent from day to day. The community structure changed when flavomycin was introduced. The roles of F. necrophorum and HAP species in ammonia formation and of F. necrophorum in the invasion of wall tissue are consistent with the observed effects of flavomycin on ruminal ammonia formation and, in other studies, on decreasing tissue-turnover rates.
-
-
-
The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation
More LessBacteria in anoxic environments typically convert aromatic compounds derived from pollutants or green plants to benzoyl-CoA, and then to the C7 dicarboxylic acid derivative 3-hydroxypimelyl-CoA. Inspection of the recently completed genome sequence of the purple nonsulfur phototroph Rhodopseudomonas palustris revealed one predicted cluster of genes for the β-oxidation of dicarboxylic acids. These genes, annotated as pimFABCDE, are predicted to encode acyl-CoA ligase, enoyl-CoA hydratase, acyl-CoA dehydrogenase and acyl-CoA transferase enzymes, which should allow the conversion of odd-chain dicarboxylic acids to glutaryl-CoA, and even-chain dicarboxylic acids to succinyl-CoA. A mutant strain that was deleted in the pim gene cluster grew at about half the rate of the wild-type parent when benzoate or pimelate was supplied as the sole carbon source. The mutant grew five times more slowly than the wild-type on the C14 dicarboxylic acid tetradecanedioate. The mutant was unimpaired in growth on the C8-fatty acid caprylate. The acyl-CoA ligase predicted to be encoded by the pimA gene was purified, and found to be active with C7–C14 dicarboxylic and fatty acids. The expression of a pimA–lacZ chromosomal gene fusion increased twofold when cells were grown in the presence of straight-chain C7–C14 dicarboxylic and fatty acids. These results suggest that the β-oxidation enzymes encoded by the pim gene cluster are active with medium-chain-length dicarboxylic acids, including pimelate. However, the finding that the pim operon deletion mutant is still able to grow on dicarboxylic acids, albeit at a slower rate, indicates that R. palustris has additional genes that can also specify the degradation of these compounds.
-
- Plant-Microbe Interactions
-
-
-
Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens
The biocontrol agent Pseudomonas fluorescens F113 undergoes phenotypic variation during rhizosphere colonization, and this variation has been related to the activity of a site-specific recombinase encoded by the sss gene. Here, it is shown that a second recombinase encoded by the xerD gene is also implicated in phenotypic variation. A putative xerD gene from this strain was cloned, and sequence analysis confirmed that it encoded a site-specific recombinase of the λ integrase family. Mutants affected in the sss or xerD genes produced a very low quantity of phenotypic variants compared to the wild-type strain, both under prolonged cultivation in the laboratory and after rhizosphere colonization, and they were severely impaired in competitive root colonization. Overexpression of the genes encoding either recombinase resulted in a substantial increment in the production of phenotypic variants under both culture and rhizosphere colonization conditions, implying that both site-specific recombinases are involved in phenotypic variation. Overexpression of the sss gene suppressed the phenotype of a xerD mutant, but overexpression of the xerD gene had no effect on the phenotype of an sss mutant. Genetic analysis of the phenotypic variants obtained after overexpression of the genes encoding both the recombinases showed that they carried mutations in the gacA/S genes, which are necessary to produce a variety of secondary metabolites. These results indicate that the Gac system is affected by the activity of the site-specific recombinases. Transcriptional fusions of the sss and xerD genes with a promoterless lacZ gene showed that both genes have a similar expression pattern, with maximal expression during stationary phase. Although the expression of both genes was independent of diffusible compounds present in root exudates, it was induced by the plant, since bacteria attached to the root showed enhanced expression.
-
-
- Theoretical Microbiology
-
-
-
Skew-Laplace distribution in Gram-negative bacterial axenic cultures: new insights into intrinsic cellular heterogeneity
More LessThe application of flow cytometry and skew-Laplace statistical analysis to assess cellular heterogeneity in Gram-negative axenic cultures is reported. In particular, fit to the log-skew-Laplace distribution for cellular side scatter or ‘granulosity’ is reported, and a number of theoretical and applied issues are considered in relation to the biological significance of this fit.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)