-
Volume 150,
Issue 6,
2004
Volume 150, Issue 6, 2004
- ENVIRONMENTAL MICROBIOLOGY
-
-
Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry
More LessMicrocystis sp. has been recognized in recent years as a producer of a high number of secondary metabolites. Among these, peptides that are produced by the non-ribosomal peptide synthetase pathway often show bioactivity or are toxic to humans. The production of particular peptides is specific for individual Microcystis clones, allowing their characterization as chemotypes by analysing the peptidome. The authors studied the in situ diversity of peptides and chemotypes in Microcystis communities from lakes in and around Berlin, Germany, by direct analysis of individual colonies by MALDI-TOF mass spectrometry. From 165 colonies analysed a total of 46 individual peptides could be identified, 21 of which have not been described previously. For six of the new peptides the structures could be elucidated from fragment patterns, while for others only a preliminary classification could be achieved. In most colonies, two to ten individual peptides were detected. In 19 colonies, 16 of which were identified as M. wesenbergii, no peptide metabolites could be detected. The peptide data of 146 colonies were subjected to an ordination (principal components analysis). The principal components were clearly formed by the microcystin variants Mcyst-LR, -RR and -YR, anabaenopeptins B and E/F, a putative microviridin, and a new cyanopeptolin. In the resulting ordination plots most colonies were grouped into five distinct groups, while 40 colonies scattered widely outside these groups. In some cases colonies from different lakes clustered closely, indicating the presence of similar chemotypes in the respective samples. With respect to colony morphology no clear correlation between a chemotype and a morphospecies could be established, but M. aeruginosa, for example, was found to produce predominantly microcystins. In contrast, M. ichthyoblabe colonies were mostly negative for microcystins and instead produced anabaenopeptins. The number of peptides detected in a limited number of samples and the various combinations of peptides in individual Microcystis colonies highlights the immense metabolic potential and diversity of this genus.
-
Characterization of Pseudomonas putida genes responsive to nutrient limitation
More LessThe low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation and biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high availability of nutrients and oxygen. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 were examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7 and NRM17, were selected for identification of the tagged genes. In strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased 4·9–26·4-fold under various low-nutrient conditions. In NRM7, expression of the novel NADPH : quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low-nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low-nutrient conditions but its absolute expression level was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in Escherichia coli.
-
Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment
Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial adhesion. The formation of a conditioning film of organic compounds adsorbed from seawater affects the properties of substratum surfaces prior to bacterial adhesion, which is a complicating factor in studying the mechanism of bacterial adhesion. In this paper, the impact of conditioning films adsorbed from natural seawater to four polyurethane coatings with different hydrophobicity, elasticity and roughness was studied for three different marine bacterial strains in a multiple linear regression analysis. The water contact angle on hydrophobic coatings decreased on average by 8 degrees and increased on average by the same amount on hydrophilic coatings. These changes were accompanied by increased concentrations of oxygen and nitrogen on the surface as determined by X-ray photoelectron spectroscopy, indicative of adsorption of proteinaceous material. Furthermore, the mean surface roughness increased on average by 4 nm after conditioning film formation. Multiple linear regression analysis revealed that changes in deposition due to conditioning film formation of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. SW5H and Halomonas pacifica in a stagnation-point flow chamber could be explained in a model comprising hydrophobicity and the prevalence of nitrogen-rich components on the surface for the most hydrophobic strain. For the two more hydrophilic strains, deposition was governed by a combination of surface roughness and hydrophobicity. Elasticity was not a factor in bacterial adhesion to conditioning films.
-
Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms
Fifty strains belonging to Vibrio harveyi, Vibrio campbellii, and the recently described Vibrio rotiferianus, were analysed using phenotypic and genomic techniques with the aim of analysing the usefulness of the different techniques for the identification of V. harveyi-related species. The species V. harveyi and V. campbellii were phenotypically indistinguishable by more than 100 phenotypic features. Thirty-nine experimental strains were phenotypically identified as V. harveyi, but FAFLP, REP-PCR, IGS-PCR and DNA–DNA hybridization proved that they in fact belong to the species V. campbellii. Similar groupings were found among all fingerprinting methodologies (except IGS-PCR). Thirty-two experimental strains clustered with the V. campbellii type and one reference strain; seven strains clustered with the V. harveyi type and three reference strains; and the type and four reference strains of V. rotiferianus grouped together. The correlations between DNA–DNA hybridization and the genomic fingerprinting by FAFLP and (GTG)5-PCR were found to be above 0·68 and statistically significant, suggesting the value of the latter techniques for the reliable identification of V. harveyi-related species. The results presented indicate that strains phenotypically identified as V. harveyi are in fact V. campbellii; these findings position V. campbellii as an important species involved in diseases of reared aquatic organisms.
- Top
-
- GENES AND GENOMES
-
-
Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium
More LessAcquisition of genetic information through horizontal gene transfer (HGT) is an important evolutionary process by which micro-organisms gain novel phenotypic characteristics. In pathogenic bacteria, for example, it facilitates maintenance and enhancement of virulence and spread of drug resistance. In the genus Mycobacterium, to which several primary human pathogens belong, HGT has not been clearly demonstrated. The few existing reports suggesting this process are based on circumstantial evidence of similarity of sequences found in distantly related species. Here, direct evidence of HGT between strains of Mycobacterium avium representing two different serotypes is presented. Conflicting evolutionary histories of genes encoding elements of the glycopeptidolipid (GPL) biosynthesis pathway led to an analysis of the GPL cluster genomic sequences from four Mycobacterium avium strains. The sequence of M. avium strain 2151 appeared to be a mosaic consisting of three regions having alternating identities to either M. avium strains 724 or 104. Maximum-likelihood estimation of two breakpoints allowed a ∼4100 bp region horizontally transferred into the strain 2151 genome to be pinpointed with confidence. The maintenance of sequence continuity at both breakpoints and the lack of insertional elements at these sites strongly suggest that the integration of foreign DNA occurred by homologous recombination. To our knowledge, this is the first report to demonstrate naturally occurring homologous recombination in Mycobacterium. This previously undiscovered mechanism of genetic exchange may have major implications for the understanding of Mycobacterium pathogenesis.
-
GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum
The transcription of the 14 p-gvp genes involved in gas vesicle formation of Halobacterium salinarum PHH1 is driven by the four promoters pA, pD, pF and pO. The regulation of these promoters was investigated in Haloferax volcanii transformants with respect to the endogenous regulatory proteins GvpE and GvpD. Northern analyses demonstrated that the transcription derived from the pA and pD promoters was enhanced by GvpE, whereas the activities of the pF and pO promoters were not affected. Similar results were obtained using promoter fusions with the bgaH reporter gene encoding an enzyme with β-galactosidase activity. The largest amount of specific β-galactosidase activity was determined for pA-bgaH transformants, followed by pF-bgaH and pD-bgaH transformants. The presence of GvpE resulted in a severalfold induction of the pA and pD promoter, whereas the pF promoter was not affected. A lower GvpE-induced pA promoter activity was seen in the presence of GvpD in the pA-bgaH/DEex transformants, suggesting a function of GvpD in repression. To determine the DNA sequences involved in the GvpE-mediated activation, a 50-nucleotide region of the pA promoter was investigated by 4-nucleotide scanning mutagenesis. Some of these mutations affected the basal transcription, especially mutations in the region of the TATA box and the putative BRE sequence element, and also around position −10. Mutant E, harbouring a sequence with greater identity to the consensus BRE element, showed a significantly enhanced basal promoter activity compared to wild-type. Mutations not affecting basal transcription, but yielding a reduced GvpE-mediated activation, were located immediately upstream of BRE. These results suggested that the transcription activation by GvpE is in close contact with the core transcription machinery.
-
Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent
More LessThe complete nucleotide sequences of the two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent (BLTVA) have been determined. The larger plasmid, pBLTVA-1, was 10 785 nt in length and contained 11 putative ORFs, almost all of which were duplicated or triplicated on the plasmid due to the presence of large repeated regions. The sequence contained a series of tandem repeats, the largest of which was 338 nt long. The sequences of ORFs 4 and 11 showed homology with the replication genes of plasmids from other phytoplasmas and from geminiviruses. ORF9, the only ORF present as a single copy, showed homology with DNA primase genes from bacterial chromosomes and contained the conserved zinc finger and topoisomerase/primase domains. None of the other eight ORFs showed homology with known sequences in the GenBank database. pBLTVA-2 was 2587 nt in length, and all of its sequence was nearly identical to sequences from pBLTVA-1, most of which spanned ORFs 10 and 11, including the 338 nt tandem repeat. Analysis of 30 strains of BLTVA showed that most of the 11 putative ORFs were present, but the size of the plasmids varied in these strains.
- Top
-
- MICROBIOLOGY COMMENT
- PATHOGENS AND PATHOGENICITY
-
-
The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks
More LessIt has recently been shown that the enteropathogen Campylobacter jejuni has an N-linked general protein glycosylation pathway (Pgl) that modifies many of the organism's proteins. To determine the role of the N-linked general glycosylation in C jejuni, the authors studied the pglH gene, which shows high similarity to a family of sugar transferases. pglH mutants were constructed in strains 81116 and 11168H. Both mutants were shown to be deficient in their ability to glycosylate a number of C. jejuni proteins, but their lipooligosaccharide and capsule were unaffected. The pglH mutants had significantly reduced ability to adhere to and invade human epithelial Caco-2 cells. Additionally, the 81116 pglH mutant was severely affected in its ability to colonize chicks. These results suggest that glycosylation is important for the attachment of C. jejuni to human and chicken host cells and imply a role for glycoproteins in the pathogenesis of C. jejuni.
-
Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae
From the porcine pathogen Actinobacillus pleuropneumoniae cultivated in iron-deficient or haem-deficient media, haemoglobin (Hb)-agarose affinity purification was exploited to isolate an outer-membrane protein of ∼105 kDa, designated HgbA. Internal peptide sequences of purified HgbA were used to design oligonucleotide primers for PCR amplification, yielding amplicons that showed partial sequences with homology to hgbA of Pasteurella multocida. Upon screening two genomic libraries of A. pleuropneumoniae serotype 1 strain 4074, positive clones were assembled into an ORF of 2838 bp. HgbA (946 aa) includes a signal peptide of 23 aa and the deduced HgbA sequence (104 890 Da) also demonstrated a possible Ton box. The promoter region of hgbA from A. pleuropneumoniae serotype 1 showed consensus for −35 and −10 sequences and a putative Fur-binding site. RT-PCR confirmed that hgbA of A. pleuropneumoniae is upregulated in response to diminished levels of iron in the culture medium. While an internally deleted hgbA mutant was unable to use pig Hb as sole source of iron for growth, flow cytometry confirmed its Hb binding; the internally deleted sequences may not be required for Hb binding, but appear necessary for the iron supply from Hb. HgbA is required for growth of A. pleuropneumoniae in the presence of Hb as sole iron source.
-
Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans
Conditions in the infected human host trigger virulence attributes of the fungal pathogen Candida albicans. Specific inducers and elevated temperatures lead to hyphal development or regulate chlamydospore development. To explore if these processes are affected by membrane lipids, an investigation of the functions of the Ole1 fatty acid desaturase (stearoyl-CoA desaturase) in C. albicans, which synthesizes oleic acid, was undertaken. A conditional strain expressing OLE1 from the regulatable MET3 promoter was unable to grow in repressing conditions, indicating that OLE1 is an essential gene. In contrast, a mutant lacking both alleles of OLE2, encoding a Ole1p homologue, was viable and had no apparent phenotypes. Partial repression of MET3p–OLE1 slightly lowered oleic acid levels and decreased membrane fluidity; these conditions permitted growth in the yeast form, but prevented hyphal development in aerobic conditions and blocked the formation of chlamydospores. In contrast, in hypoxic conditions, which trigger an alternative morphogenetic pathway, hyphal morphogenesis was unaffected. Because aerobic morphogenetic signalling and oleic acid biosynthesis require oxygen, it is proposed that oleic acid may function as a sensor activating specific morphogenetic pathways in normoxic conditions.
-
The hyaluronate lyase of Staphylococcus aureus – a virulence factor?
More LessThe hyaluronate lyase (HL) gene of Staphylococcus aureus 8325-4 (hysA) was inactivated in vitro with the insertion of the erythromycin determinant, ermC, from plasmid pE194. The hysA : : ermC mutation was introduced into S. aureus via a temperature-sensitive shuttle vector, where it underwent homologous recombination with the wild-type (w.t.) allele. The insertion of ermC in the chromosomal hysA locus was confirmed by Southern blot hybridization and the loss of HL activity was demonstrated macroscopically by a plate assay. The importance of HL for pathogenicity was assessed by comparing the virulence of the HL− mutant strain to that of the w.t. in an established mouse abscess model of S. aureus infection. A significantly higher cell recovery was obtained from lesions infected with the w.t. strain compared to the lesions infected with the HL− strain (P =0·01). Although the lesion areas from both groups were not significantly different (P=0·9) they were of different morphology. A colorimetric assay was used to measure HL activity from culture supernatants of the S. aureus 8325-4 strains w.t., WA250 (agr) and PC1839 (sar) grown in a chemically defined medium. HL activity reached a maximum in the w.t. strain during mid-exponential phase (t=5 h) and while it showed a 16-fold decrease in the agr mutant it increased 35-fold in the sar mutant background. These results strongly suggest that HL is a virulence factor which is important in the early stages of subcutaneous infections.
-
Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype
More LessWhen protoplasts of the opportunistic fungal pathogen Aspergillus fumigatus were treated with low but toxic levels of hydrogen peroxide (0·1 mM) or amphotericin B (0·5 μg ml−1), loss of cell viability and death were associated with a number of phenotypic changes characteristic of apoptosis. The percentage of protoplasts staining positive with annexin V-FITC, an indicator of the externalization of phosphatidylserine and an early marker of apoptosis, rose to ∼55 % within 1 h. This was followed by a similar increase in apoptotic DNA fragmentation detected by the TUNEL assay, and led to a loss of cell permeability and death in ∼90 % of protoplasts, as indicated by the uptake of propidium iodide. The development of an apoptotic phenotype was blocked when protoplasts were pre-treated with the protein synthesis inhibitor cycloheximide, indicating active participation of the cell in the process. However, no significant activity against synthetic caspase substrates was detected, and the inclusion of the cell-permeant broad-spectrum caspase inhibitor Z-VAD-fmk did not block the development of the apoptotic-like phenotype. Higher concentrations of H2O2 (1·8 mM) and amphotericin B (1 μg ml−1) caused protoplasts to die without inducing an apoptotic phenotype. As predicted, the fungistatic antifungal agent itraconazole, which inhibits growth without causing immediate cell death, did not induce an apoptotic-like phenotype.
- Top
-
- PHYSIOLOGY
-
-
The transcription of the cbb operon in Nitrosomonas europaea
More LessNitrosomonas europaea is an aerobic ammonia-oxidizing bacterium that participates in the C and N cycles. N. europaea utilizes CO2 as its predominant carbon source, and is an obligate chemolithotroph, deriving all the reductant required for energy and biosynthesis from the oxidation of ammonia (NH3) to nitrite (
). This bacterium fixes carbon via the Calvin–Benson–Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). The RubisCO operon is composed of five genes, cbbLSQON. This gene organization is similar to that of the operon for ‘green-like’ type I RubisCOs in other organisms. The cbbR gene encoding the putative regulatory protein for RubisCO transcription was identified upstream of cbbL. This study showed that transcription of cbb genes was upregulated when the carbon source was limited, while amo, hao and other energy-harvesting-related genes were downregulated. N. europaea responds to carbon limitation by prioritizing resources towards key components for carbon assimilation. Unlike the situation for amo genes, NH3 was not required for the transcription of the cbb genes. All five cbb genes were only transcribed when an external energy source was provided. In actively growing cells, mRNAs from the five genes in the RubisCO operon were present at different levels, probably due to premature termination of transcription, rapid mRNA processing and mRNA degradation.
-
Specific growth rate and not cell density controls the general stress response in Escherichia coli
More LessIn batch cultures of Escherichia coli, the intracellular concentration of the general stress response sigma factor RpoS typically increases during the transition from the exponential to the stationary growth phase. However, because this transition is accompanied by complex physico-chemical and biological changes, which signals predominantly elicit this induction is still the subject of debate. Careful design of the growth environment in chemostat and batch cultures allowed the separate study of individual factors affecting RpoS. Specific growth rate, and not cell density or the nature of the growth-limiting nutrient, controlled RpoS expression and RpoS-dependent hydroperoxidase activity. Furthermore, it was demonstrated that the standard E. coli minimal medium A (MMA) is not suitable for high-cell-density cultivation because it lacks trace elements. Previously reported cell-density effects in chemostat cultures of E. coli can be explained by a hidden, secondary nutrient limitation, which points to the importance of medium design and appropriate experimental set-up for studying cell-density effects.
-
Formation of ‘non-culturable’ cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation
More LessConditions were investigated that promote the formation of ‘non-culturable’ (NC) cells of Mycobacterium (Myc.) smegmatis in stationary phase. After cultivation in a rich medium, or under conditions that may be considered optimal for bacterial growth, or starvation for carbon, nitrogen or phosphorus, bacteria failed to enter a NC state. However, when grown under suboptimal conditions, resulting in a reduced growth rate or maximal cell concentration (e.g. in modified Hartman's–de Bont medium), bacteria adopted a stable NC state after 3–4 days incubation in stationary phase. Such conditions are not specific as purF and devR mutants of Myc. smegmatis also showed (transient) loss of culturability following growth to stationary phase in an optimized medium, but under oxygen-limited conditions. The behaviour of the same mutants in oxygen-sufficient but nutrient-inappropriate medium (modified Hartman's–de Bont medium) was similar to that of the wild-type (adoption of a stable NC state). It is hypothesized that adoption of a NC state may represent an adaptive response of the bacteria, grown under conditions when their metabolism is significantly compromised due to the simultaneous action of several factors, such as usage of inappropriate nutrients or low oxygen availability or impairment of a particular metabolic pathway. NC cells of wild-type Myc. smegmatis resume growth when transferred to a suitable resuscitation medium. Significantly, resuscitation was observed when either recombinant Rpf protein or supernatant derived from a growing bacterial culture was incorporated into the resuscitation medium. Moreover, co-culture with Micrococcus (Mcc.) luteus cells (producing and secreting Rpf) also permitted resuscitation. Isogenic strains of Myc. smegmatis harbouring plasmids containing the Mcc. luteus rpf gene also adopt a similar NC state after growth to stationary phase in modified Hartman's–de Bont medium. However, in contrast to the behaviour noted above, these strains resuscitated spontaneously when transferred to the resuscitation medium, presumably because they are able to resume endogenous synthesis of Mcc. luteus Rpf. Resuscitation was not observed in the control strain harbouring a plasmid lacking Mcc. luteus rpf. In contrast to wild-type, the NC cells of purF and devR mutants obtained under oxygen-limited conditions resuscitate spontaneously, presumably because the heterogeneous population contains some residual viable cells that continue to make Rpf-like proteins.
-
Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides
More LessTaurine metabolism by two phototrophically grown purple nonsulfur bacteria enrichment isolates has been examined. Rhodopseudomonas palustris (strain Tau1) grows with taurine as a sole electron donor, sulfur and nitrogen source during photoautotrophic growth. Rhodobacter sphaeroides (strain Tau3) grows on the compound as sole electron donor, sulfur and nitrogen source, and partial carbon source, in the presence of CO2 during photoheterotrophic growth. Both organisms utilize an inducible taurine–pyruvate aminotransferase and a sulfoacetaldehyde acetyltransferase. The products of this metabolism are bisulfite and acetyl phosphate. Bisulfite ultimately was oxidized to sulfate, but this was not an adequate source of electrons for photometabolism. Experiments using either [U-14C]taurine or 14CO2 demonstrated that Rb. sphaeroides Tau3 assimilated the carbon from approximately equimolar amounts of taurine and exogenous CO2. The taurine-carbon assimilation was not diminished by excess non-radioactive bicarbonate. Malate synthase (but not isocitrate lyase) was induced in these taurine-grown cells. It is concluded that assimilation of taurine carbon occurs through an intermediate other than CO2. Similar labelling experiments with Rp. palustris Tau1 determined that taurine is utilized only as an electron donor for the reduction of CO2, which contributes all the cell carbon. Photoautotrophic metabolism was confirmed in this organism by the absence of either malate synthase or isocitrate lyase in taurine+CO2-grown cells. Culture collection strains of these two bacteria did not utilize taurine in these fashions.
-
Oxidative stress response in Clostridium perfringens
More LessClostridium perfringens, a strictly anaerobic bacterium, is able to survive when exposed to oxygen for short periods of time and exhibits a complex adaptive response to reactive oxygen species, both under aerobic and anaerobic conditions. However, this adaptive response is not completely understood. C. perfringens possesses specialized genes that might be involved in this adaptive process, such as those encoding superoxide dismutase (SOD), superoxide reductase and alkyl hydroperoxide reductase, but their contribution to the oxidative stress response and their control mechanisms are unknown. By a combination of functional complementation of Escherichia coli strains impaired in either SOD, alkyl hydroperoxide reductase (AhpC) or catalase activity (Cat), transcription analysis and characterization of mutants impaired in regulatory genes, it was concluded that: (i) the product of the sod gene is certainly essential to scavenge superoxide radicals, (ii) the ahpC gene, which is fully induced in all oxidative stress conditions, is probably involved in the scavenging of all intracellular peroxides, (iii) the three rubrerythrin (rbr) genes of C. perfringens do not encode proteins with in vivo H2O2 reductase activity, and (iv) the two rubredoxin (rub) genes do not contribute to the hypothetical superoxide reductase activity, but are likely to belong to an electron transfer chain involved in energy metabolism.
- Top
-
- REVIEWS
-
-
The replication-related organization of bacterial genomes
More LessThe replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
