- Volume 150, Issue 4, 2004
Volume 150, Issue 4, 2004
- Genes And Genomes
-
-
-
Genetic characterization of pcpS, encoding the multifunctional phosphopantetheinyl transferase of Pseudomonas aeruginosa
More LessFatty acid synthases (primary metabolism), non-ribosomal peptide synthases and polyketide synthases (secondary metabolism) contain phosphopantetheinyl (Ppant)-dependent carrier proteins that must be made functionally active by transfer of the 4′-Ppant moiety from coenzyme A. These reactions are usually catalysed by dedicated Ppant transferases. Although rich in Ppant-dependent carrier proteins, it was previously shown that Pseudomonas aeruginosa possesses only one Ppant transferase, encoded by pcpS, which functions in both primary and secondary metabolism. Consistent with this notion are our findings that pcpS can genetically complement mutations in the Escherichia coli acpS and entD genes, encoding the apo-acyl carrier protein (ACP) synthase of fatty acid synthesis and a Ppant transferase of enterobactin synthesis, respectively. It also complements a Bacillus subtilis sfp mutation affecting a gene encoding a Ppant transferase essential for surfactin synthesis. A pcpS insertion mutant could only be constructed in a strain carrying the E. coli acpS gene on a chromosomally integrated element in trans, implying that the in vitro essentiality of pcpS is due to its requirement for activation of apo-ACP of fatty acid synthesis. The conditional pcpS mutant is non-fluorescent, does not produce pyoverdine and pyochelin, and does not grow in the presence of iron chelators. The data presented here for the first time confirm that PcpS plays an essential role in both fatty acid and siderophore metabolism.
-
-
-
-
The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori
More LessPhase variation is a common mechanism used by pathogenic bacteria to generate intra-strain diversity that is important in niche adaptation and is strongly associated with virulence determinants. Previous analyses of the complete sequences of the Helicobacter pylori strains 26695 and J99 have identified 36 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Here a comparative analysis of the two genomes is reported and an updated and expanded list of 46 candidate phase-variable genes in H. pylori is described. These have been systematically investigated by PCR and sequencing for the presence of the genes, and the presence and variability in length of the repeats in strains 26695 and J99 and in a collection of unrelated H. pylori strains representative of the main global subdivisions recently suggested. This provides supportive evidence for the phase variability of 30 of the 46 candidates. Other differences in this subset of genes were observed (i) in the repeats, which can be present or absent among the strains, or stabilized in different strains and (ii) in the gene-complements of the strains. Differences between genes were not consistently correlated with the geographic population distribution of the strains. This study extends and provides new evidence for variation of this type in H. pylori, and of the high degree of diversity of the repertoire of genes which display phase-variable switching within individual strains.
-
-
-
Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa
Pathogenesis of Pseudomonas aeruginosa is controlled to a major extent by the two quorum-sensing systems las and rhl. The previously uncharacterized gene PA2591 was identified as a major virulence regulator, vqsR, in the quorum-sensing hierarchy. vqsR is a member of the LuxR family and possesses a las box in its upstream region. Transposon inactivation of vqsR abrogated the production of N-acylhomoserine lactones and the secretion of exoproducts and diminished bacterial virulence for Caenorhabditis elegans. Cytotoxicity towards macrophages was not affected. vqsR mRNA was expressed more strongly in the presence of human serum and oxidative stress than under standard growth conditions. High-density oligonucleotide microarrays were used to compare the global expression profile of a wild-type strain and a vqsR mutant. One-hundred-and-fifty-one and 113 genes were significantly differentially expressed in the presence of H2O2 and human serum, respectively. The disruption of vqsR repressed the expression of genes that are known to be promoted by quorum sensing and activated the expression of genes that are known to be repressed by quorum sensing. Moreover, the vqsR mutant harboured less mRNA transcript for the production of siderophores and membrane-bound elements of antibiotic resistance. The protein encoded by PA2591 regulates several traits of pathogenicity; hence, the name vqsR (‘virulence and quorum-sensing regulator’) was assigned to PA2591.
-
-
-
A putative transposase gene in the 16S–23S rRNA intergenic spacer region of Mycoplasma imitans
More LessExamination of the nucleotide sequences of the 16S–23S intergenic transcribed spacer (ITS) region of Mycoplasma imitans and Mycoplasma gallisepticum identified a putative transposase gene located only in the ITS of M. imitans, which can be used as a genetic marker to distinguish these two species. The relative size of the PCR products of the ITS region allowed a clear distinction to be made between strains of M. imitans and M. gallisepticum, both of which could be readily discriminated from the type strains of all the other recognized avian Mycoplasma species. In addition, the putative transposase gene assigned in the ITS of M. imitans was shown to include a sequence homologous to that of the P75 gene of M. gallisepticum. This is believed to be the first description of an insertion element in the rRNA operon region of a mycoplasma species.
-
-
-
PsfR, a factor that stimulates psbAI expression in the cyanobacterium Synechococcus elongatus PCC 7942
More LessIn this paper a gene (psfR) is reported that regulates psbAI activity in Synechococcus elongatus, a unicellular photoautotrophic cyanobacterium that carries out oxygenic (plant-type) photosynthesis and exhibits global circadian regulation of gene expression. In S. elongatus, a family of three psbA genes encodes the D1 protein of the photosystem II reaction centre. Overexpression of psfR results in increased expression of psbAI, but does not affect the circadian timing of psbAI expression. psfR overexpression affected some, but not all of the genes routinely surveyed for circadian expression. PsfR acts (directly or indirectly) on the psbAI basal promoter region. psfR knockout mutants exhibit wild-type psbAI expression, suggesting that other factors can regulate psbAI expression in the absence of functional PsfR. PsfR contains two receiver-like domains (found in bacterial two-component signal transduction systems), one of which lacks the conserved aspartyl residue required for phosphoryl transfer. PsfR also contains a GGDEF domain. The presence of these domains and the absence of a detectable conserved DNA-binding domain suggest that PsfR may regulate psbAI expression via protein–protein interactions or GGDEF activity (the production of cyclic dinucleotides) rather than direct interaction with the psbAI promoter.
-
- Pathogens And Pathogenicity
-
-
-
Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium
More LessBy DNA microarray, the Salmonella typhimurium marRAB operon was identified as being bile-activated. Transcriptional assays confirm that marRAB is activated in the presence of bile and that this response is concentration-dependent. The bile salt deoxycholate is alone able to activate transcription, while there was no response in the presence of other bile salts tested or a non-ionic detergent. Deoxycholate is able to interact with MarR and interfere with its ability to bind to the mar operator. In addition, incubation of salmonellae in the presence of sublethal concentrations of bile is able to enhance resistance to chloramphenicol and bile, by means of both mar-dependent and mar-independent pathways. To further characterize putative marRAB-regulated genes that may be important for the resistance phenotype, acrAB, which encodes an efflux pump, was analysed. In S. typhimurium, acrAB is required for bile resistance, but while transcription of acrAB is activated by bile, this activation is independent of marRAB, as well as Rob, RpoS or PhoP–PhoQ. These data suggest that bile interacts with salmonellae to increase resistance to bile and other antimicrobials and that this can occur by marRAB- and acrAB-dependent pathways that function independently with respect to bile activation.
-
-
-
-
Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS
More LessIn Pseudomonas aeruginosa, virulence determinants and biofilm formation are coordinated via a hierarchical quorum sensing cascade, which involves the transcriptional regulators LasR and RhlR and their cognate homoserine lactone activators C12-HSL [N-(3-oxododecanoyl)-l-homoserine lactone] and c4-hsl (n-butanoyl-l-homoserine lactone), which are produced by LasI and RhlI, respectively. The exoenzyme S regulon of P. aeruginosa, comprises genes for a type III secretion system and for four anti-host effector proteins (ExoS, T, U and Y), which are translocated into host cells. It is a reasonable assumption that this ExoS regulon should be downregulated in the biofilm growth state and thus should also be under the regulatory control of the Las/Rhl system. Therefore, an exoS′-gfp reporter construct was used, and the influence of the Las and Rhl quorum sensing systems and the effect of the stationary-phase sigma factor RpoS on regulation of the exoS gene was examined. Evidence is provided for downregulation of exoS during biofilm formation of P. aeruginosa PAO1. The rhlI mutant PDO100 and rhlR mutant PDO111, but not the lasI mutant PDO-JP1, showed approximately twofold upregulation of the exoS′-gfp reporter in comparison to PAO1. Upregulation of exoS′-gfp in the PDO100 mutant could be repressed to normal level by adding C4-HSL autoinducer, indicating a negative regulatory effect of RhlR/C4-HSL on exoS expression. As RhlR/C4-HSL is also involved in regulation of RpoS, the P. aeruginosa rpoS mutant SS24 was examined and the exoS′-gfp reporter was found to be fivefold upregulated in comparison to PAO1. For the first time evidence is reported for a regulatory cascade linking RhlR/RhlI and RpoS with the expression of the anti-host effector ExoS, part of the exoenzyme S regulon. Moreover, these data suggest that the exoenzyme S regulon may be downregulated in P. aeruginosa biofilms.
-
-
-
The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis
Porins mediate the diffusion of hydrophilic solutes across the outer membrane of mycobacteria, but the efficiency of this pathway is very low compared to Gram-negative bacteria. To examine the importance of porins in slow-growing mycobacteria, the major porin MspA of Mycobacterium smegmatis was expressed in Mycobacterium tuberculosis and Mycobacterium bovis. Approximately 20 and 35 MspA molecules per μm2 cell wall were observed in M. tuberculosis and M. bovis BCG, respectively, by electron microscopy and quantitative immunoblot experiments. Surface accessibility of MspA in M. tuberculosis was demonstrated by flow cytometry. Glucose uptake was twofold faster, indicating that the outer membrane permeability of M. bovis BCG to small and hydrophilic solutes was increased by MspA. This significantly accelerated the growth of M. bovis BCG, identifying very slow nutrient uptake as one of the determinants of slow growth in mycobacteria. The susceptibility of both M. bovis BCG and M. tuberculosis to zwitterionic β-lactam antibiotics was substantially enhanced by MspA, decreasing the minimal inhibitory concentration up to 16-fold. Furthermore, M. tuberculosis became significantly more susceptible to isoniazid, ethambutol and streptomycin. Fluorescence with the nucleic acid binding dye SYTO 9 was 10-fold increased upon expression of mspA. These results indicated that MspA not only enhanced the efficiency of the porin pathway, but also that of pathways mediating access to large and/or hydrophobic agents. This study provides the first experimental evidence that porins are important for drug susceptibility of M. tuberculosis.
-
-
-
Identification and cloning of the gene encoding BmpC: an outer-membrane lipoprotein associated with Brachyspira pilosicoli membrane vesicles
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH2O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; ρ=1·18 g cm−3) and a low-density fraction (LDMV; ρ=1·12 g cm−3). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
-
-
-
Low-proline environments impair growth, proline transport and in vivo survival of Staphylococcus aureus strain-specific putP mutants
Staphylococcus aureus is a common cause of disease in humans, particularly in hospitalized patients. This species needs to import several amino acids to survive, including proline. Previously, it was shown that an insertion mutation in the high-affinity proline uptake gene putP in strain RN6390 affected proline uptake by the bacteria as well as reducing their ability to survive in vivo. To further delineate the effect of the putP mutation on growth of S. aureus strain RN6390, a proline uptake assay that spanned less than 1 min was done to measure transport. An eightfold difference in proline levels was observed between the wild-type strain and the high-affinity proline transport mutant strain after 15 s, indicating that the defect was only in proline transport and not a combination of proline transport, metabolism and accumulation that would have been assessed with longer assays. A putP mutant of S. aureus strain RN4220 was then grown in minimal medium with different concentrations of proline. When compared to the wild-type strain, the putP mutant strain was significantly growth impaired when the level of proline was decreased to 1·74 μM. An assessment of proline concentrations in mouse livers and spleens showed proline concentrations of 7·5 μmol per spleen and 88·4 μmol per liver. To verify that the effects on proline transport and bacterial survival were indeed caused solely by a mutation in putP, the putP mutation was complemented by cloning a full-length putP gene on a plasmid that replicates in S. aureus. Complementation of the putP mutant strains restored proline transport, in vitro growth in low-proline medium, and in vivo survival within mice. These results show that the mutation in putP led to attenuated growth in low-proline media and by corollary low-proline murine organ tissues due to less efficient transport of proline into the bacteria.
-
-
-
Flagella and curli fimbriae are important for the growth of Salmonella enterica serovars in hen eggs
More LessSalmonella enterica serovar Enteritidis is unable to multiply in the albumen of fresh eggs and must gain access to the yolk contents in order to multiply to a high level (>106 c.f.u. per ml egg contents). As human Salmonella infections resulting from the consumption of infected eggs more frequently involve serovar Enteritidis phage type (PT) 4 than other serovars or PTs, a number of isolates of various S. enterica serovars were examined for their ability to multiply to a high level in eggs over a period of 8 days storage at 20 °C. Their behaviour was compared to that of a range of defined fimbrial and flagella mutants of S. Enteritidis. Strains that did not express flagella were unable to multiply in eggs, and those deficient for curli fimbriae, including strains of S. Enteritidis PT6, displayed high-level growth in significantly fewer eggs than those able to express curli. Most S. Enteritidis strains multiplied to a high level in between 5 and 10 % of eggs during 8 days storage. One PT4 strain, though, showed high levels of growth in more than 25 % of eggs over this period, significantly higher than the other PTs or the two other isolates of PT4 tested. This ability may be important for the association of PT4 infection with the consumption of eggs.
-
-
-
A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence
More LessMutants of Salmonella defective in DNA adenine methylase (dam) have been reported to be attenuated for virulence and to provide protective immunity when used as vaccine strains. To determine whether these observations could be extended to Shigella, a dam mutant of Shigella flexneri 2a was characterized and examined for the role of dam in pathogenesis. The Shigella dam mutant showed some unique characteristics; however, it retained virulence in vivo as well as in vitro. The mutant invaded cultured L2 monolayer cells as efficiently as the wild-type parent, but its intracellular growth was suppressed up to 7 h post-invasion. Furthermore, the invading dam mutant formed smaller plaques in cell monolayers compared to the parent strain. However, the mutant produced keratoconjunctivitis in the Sereny test in guinea pigs only slightly more slowly than the wild-type. While the effect of the dam mutation on virulence was modest, the rate of spontaneous mutation in the dam mutant was 1000-fold greater compared with the wild-type. The virulence and high mutability displayed by the dam mutant of Sh. flexneri suggest that a general anti-bacterial pathogen vaccine strategy based on mutations in dam needs to be re-evaluated.
-
-
-
The role of the Shigella flexneri yihE gene in LPS synthesis and virulence
More LessPreviously, the authors have shown that inactivation of Shigella flexneri yihE, a gene of unknown function upstream of dsbA, which encodes a periplasmic disulphide catalyst, results in a global change of gene expression. Among the severely down-regulated genes are galETKM, suggesting that the yihE mutant, Sh54, may inefficiently produce the UDP-glucose and UDP-galactose required for LPS synthesis. This paper demonstrates that LPS synthesis in Sh54 is impaired. As a result, Sh54 is unable to polymerize host cell actin, due to aberrant localization of IcsA, or to cause keratoconjunctivitis in guinea pigs. Furthermore, Sh54 is more sensitive to some antimicrobial agents, and exhibits epithelial cytotoxicity characteristic of neither wild-type nor dsbA mutants. Supplying galETK in trans restores LPS synthesis and corrects all the defects. Hence, it is clear that the Shigella yihE gene is important not only in regulating global gene expression, as shown previously, but also in virulence through LPS synthesis via regulating the expression of the galETK operon.
-
- Physiology
-
-
-
TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates
More LessMetabolic responses of Saccharomyces cerevisiae to different physical and chemical environmental conditions were investigated in glucose batch culture by GC-MS-detected mass isotopomer distributions in proteinogenic amino acids from 13C-labelling experiments. For this purpose, GC-MS-based metabolic flux ratio analysis was extended from bacteria to the compartmentalized metabolism of S. cerevisiae. Generally, S. cerevisiae was shown to have low catabolic fluxes through the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. Notably, respiratory TCA cycle fluxes exhibited a strong correlation with the maximum specific growth rate that was attained under different environmental conditions, including a wide range of pH, osmolarity, decoupler and salt concentrations, but not temperature. At pH values of 4·0 to 6·0 with near-maximum growth rates, the TCA cycle operated as a bifurcated pathway to fulfil exclusively biosynthetic functions. Increasing or decreasing the pH beyond this physiologically optimal range, however, reduced growth and glucose uptake rates but increased the ‘cyclic’ respiratory mode of TCA cycle operation for catabolism. Thus, the results indicate that glucose repression of the TCA cycle is regulated by the rates of growth or glucose uptake, or signals derived from these. While sensing of extracellular glucose concentrations has a general influence on the in vivo TCA cycle activity, the growth-rate-dependent increase in respiratory TCA cycle activity was independent of glucose sensing.
-
-
-
-
Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation
More LessPolyol accumulation and metabolism were examined in Aspergillus oryzae cultured on whole wheat grains or on wheat dough as a model for solid-state culture. In solid-state fermentation (SSF), water activity (a w) is typically low resulting in osmotic stress. In addition to a high level of mannitol, which is always present in the cells, A. oryzae accumulated high concentrations of glycerol, erythritol and arabitol at relatively low a w (0·96–0·97) in SSF. Accumulation of such a mixture of polyols is rather unusual and might be typical for SSF. A. oryzae mycelium accumulating various polyols at low a w contained at least four distinct polyol dehydrogenases with highest activities toward glycerol, erythritol, d-arabitol and mannitol. NADP+-dependent glycerol dehydrogenase activity correlated very well with glycerol accumulation. A similar correlation was observed for erythritol and NADP+–erythritol dehydrogenase suggesting that NADP+-dependent glycerol and erythritol dehydrogenases are involved in biosynthesis of glycerol and erythritol, respectively, and that these enzymes are induced by osmotic stress.
-
-
-
Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis
More LessLactococcus lactis strain NZ9000(pNZpyk), which overproduces pyruvate kinase (PK), was constructed. The pNZpyk plasmid carries the P nisA –pyk transcriptional fusion, and the overexpression of its pyk gene was accomplished by using the nisin-inducible expression system of the NZ9000 strain. In vivo 13C- and 31P-NMR spectroscopy was used to evaluate the effect of this modification on the metabolism of glucose in non-growing cells. A detailed description of the kinetics of glucose, end products, glycolytic intermediates, NAD+ and NADH was obtained. A 15-fold increase in the level of PK did not increase the overall glycolytic flux, which, on the contrary, was slightly reduced. Significant differences were observed in (i) the level of 3-phosphoglycerate (3-PGA) and phosphoenolpyruvate (PEP), metabolites associated with starvation; (ii) the rate of fructose 1,6-bisphosphate (FBP) depletion upon glucose exhaustion; and (iii) the NAD+/NADH ratio during glucose catabolism. In the mutant, the rate of FBP consumption after glucose depletion was notably accelerated under anaerobic conditions, whereas 3-PGA and PEP decreased to undetectable levels. Furthermore, the level of NAD+ decreased steadily during the utilization of glucose, probably due to the unanticipated reduction in the lactate dehydrogenase activity in comparison with the control strain, NZ9000(pNZ8020). The results show that PK is an important bottleneck to carbon flux only when glucose becomes limiting; in the overproducer this constriction was no longer present, as evidenced by the faster FBP consumption and lack of accumulation of 3-PGA and PEP in anaerobic as well as aerobic conditions. Despite these clear changes, the PK-overproducing strain showed typical homolactic metabolism under anaerobic conditions, as did the strain harbouring the vector plasmid without the pyk insert. However, under an oxygen atmosphere, there was increased channelling of carbon to the production of acetate and acetoin, to the detriment of lactate production.
-
- Plant-Microbe Interactions
-
-
-
Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.
Coronamycin is a complex of novel peptide antibiotics with activity against pythiaceous fungi and the human fungal pathogen Cryptococcus neoformans. It is also active against the malarial parasite, Plasmodium falciparum, with an IC50 of 9·0 ng ml−1. Coronamycin is produced by a verticillate Streptomyces sp. isolated as an endophyte from an epiphytic vine, Monstera sp., found in the Manu region of the upper Amazon of Peru. Bioassay-guided fractionation of the fermentation broths of this endophyte on silica gel and HPLC chromatography yielded two principal, inseparable, peptides with masses of 1217·9 and 1203·8 Da. Three other minor, but related components, are also present in the preparation. Amino acid analysis of coronamycin revealed residues of component 1, component 2, methionine, tyrosine and leucine at a ratio of 2 : 2 : 1 : 1 : 3. Other compounds with antifungal activities are also produced by this endophytic streptomycete.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)