-
Volume 148,
Issue 4,
2002
Volume 148, Issue 4, 2002
- Research Paper
-
-
-
Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases
More LessThe GenBank accession numbers for the cDNA sequences reported in this paper are AF139985 (CATB), AF189368 (CATA) and AF189369 (CATP).
Histoplasma capsulatum produces an extracellular catalase termed M antigen, which is similar to catalase B of Aspergillus and Emericella species. Evidence is presented here for two additional catalase isozymes in H. capsulatum. Catalase A is highly similar to a large-subunit catalase in Aspergillus and Emericella species, while catalase P is a small-subunit catalase protein with greatest similarity to known peroxisomal catalases of animals and Saccharomycotina yeasts. Complete cDNAs for the CATA and CATP genes (encoding catalases A and P, respectively) were isolated. The transcriptional expression of the H. capsulatum CATA, CATB (M antigen) and CATP genes was assessed by Northern blot hybridizations on total RNA. Results at the transcript levels for these genes are shown for three conditions: cell morphology (mycelial versus yeast phase cells), oxidative stress (in response to a challenge with H2O2) and carbon source (glucose vs glycerol). Collectively, these results demonstrated regulation of CATA by both cell morphology and oxidative stress, but not by carbon source, and regulation of CATB and CATP by carbon source but not cell morphology or oxidative stress. A phylogenetic analysis of presently available catalase sequences and intron residences was done. The results support a model for evolution of eukaryotic monofunctional catalase genes from prokaryotic genes.
-
-
-
-
Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways
More LessContinuous cultivation was used to study the effect of glucose, ammonium, nitrate or phosphate limitation on the excretion of tricarboxylic acid (TCA) cycle intermediates by Penicillium simplicissimum. Additionally, the effect of benzoic acid, salicylhydroxamic acid (SHAM) and 2,4-dinitrophenol on TCA cycle intermediates was studied. The physiological state of the fungus was characterized by its glucose and O2 consumption, its CO2 production, its intra- and extracellular concentrations of TCA cycle intermediates, as well as by its biomass yield, its maintenance coefficient and its respiratory quotient. The excretion of TCA cycle intermediates was observed during ammonium-, nitrate- and phosphate-limited growth. The highest productivity was found with phosphate-limited growth. The respiratory quotient was 1·3 under ammonium limitation and 0·7 under phosphate limitation. Citrate was always the main excreted intermediate. This justifies calling this excretion an energy-spilling process, because citrate excretion avoids the synthesis of too much NADH. The addition of benzoic acid further increased the excretion of TCA cycle intermediates by ammonium-limited hyphae. A SHAM-sensitive respiration was constitutively present during ammonium-limited growth of the fungus. The sum of the excreted organic acids was negatively correlated with the biomass yield (Y GlcX).
-
-
-
Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan
More LessThe GenBank accession number for the sequence reported in this paper is AF21741.
A gene encoding 1,3-β-glucanase was isolated from Streptomyces sioyaensis based on an activity plate assay. Analysis of the deduced amino acid sequence of the gene revealed that the matured 1,3-β-glucanase has two functional domains separated by a stretch of nine glycine residues. The N-terminal domain shares sequence similarity with bacterial endo-1,3-β-glucanases classified in glycosyl hydrolase family 16 (GHF 16), while the C-terminal domain is a putative carbohydrate-binding module (CBM) grouped into CBM family 6. To characterize the function of each domain, both the full-length and the CBM-truncated versions of the protein were expressed in Escherichia coli and purified to homogeneity. Biochemical data suggest that the glycosyl hydrolase domain preferentially catalyses the hydrolysis of glucans with 1,3-β linkage, and has an endolytic mode of action. Binding assay indicated that the C-terminal CBM binds to various insoluble β-glucans (1,3-, 1,3–1,4- and 1,4- linkages) but not to xylan, a primary binding target for most members of CBM family 6. The full-length and the CBM-truncated proteins had similar specific activity (units per mol of hydrolase domain) on soluble 1,3-β-glucan, whereas the former had much stronger specific activity on insoluble 1,3-β-glucans, suggesting that the C-terminal CBM enhances the activity of the S. sioyaensis 1,3-β-glucanase against insoluble substrates, presumably by increasing the frequency of encounter events between the hydrolase domain and the substrate.
-
-
-
Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces
In this study, the role of extracellular polymeric substances (EPS) in the initial adhesion of EPS-producing Pseudomonas aeruginosa SG81 and SG81R1, a non-EPS-producing strain, to substrata with different hydrophobicity was investigated. The release of EPS by SG81 was concurrent with a decrease in surface tension of a bacterial suspension from 70 to 45 mJ m−2 that was absent for SG81R1. Both strains adhered faster and in higher numbers to a hydrophilic than to a hydrophobic substratum, but the initial deposition rates and numbers of adhering bacteria in a stationary-end point were highest for the non-EPS-producing strain SG81R1, regardless of substratum hydrophobicity. Both strains adhered less to substrata pre-coated with isolated EPS of strain SG81. Furthermore, it was investigated whether bacteria, detached by passing air-bubbles, had left behind ‘footprints’ with an influence on adhesion of newly redepositing bacteria. Redeposition on glass was highest for non-EPS-producing SG81R1 and decreased linearly with the number of times these cycles of detachment and deposition were repeated to become similar to the redeposition of SG81 after six cycles. This indicates that P. aeruginosa SG81 leaves the substratum surface nearly completely covered with EPS after detachment, while SG81R1 releases only minor amounts of surface active EPS, completely covering the substratum after repeated cycles of detachment and adhesion. Atomic force microscopy showed a thick and irregular EPS layer (up to 32 nm) after the first detachment cycle of EPS-producing strain SG81, whereas the putatively non-EPS-producing strain SG81R1 left a 9 nm thin layer after one cycle. X-ray photoelectron spectroscopy indicated that the bacterial footprints consisted of uronic acids, the prevalence of which increased with the number of detachment and deposition cycles.
-
-
-
Envelope instability in DNA adenine methylase mutants of Salmonella enterica
More LessMutants of Salmonella enterica serovar Typhimurium lacking DNA adenine (Dam) methylase show reduced secretion of invasion effectors encoded in the Salmonella-pathogenicity island 1 (SPI-1). Concomitant with this alteration, a high number and quantity of extracellular proteins are detected in cultures of Dam− mutants. This study shows by subcellular fractionation analysis that the presence of numerous extracellular proteins in cultures of Dam− mutants is linked to an exacerbated release of membrane particulate material. The membrane ‘leaky’ phenotype and the impaired functionality of type III secretion systems were, however, unrelated since exacerbated release of proteins to the medium was evident in Dam− strains carrying mutations in either SPI-1 (invA, invJ) or flagellar (flhD) genes. This result supports the view that Dam methylation controls a plethora of cellular processes. Electron microscopy analysis demonstrated that the accumulation of membrane particulate material occurs preferentially as vesicles in stationary cultures of Dam− strains. In addition, a reduction in the relative amount of peptidoglycan-associated lipoprotein (PAL), TolB, OmpA and murein lipoprotein (Lpp) bound to peptidoglycan was observed in actively growing Dam− mutants. The existence of an envelope defect was further confirmed by the increased sensitivity to deoxycholate exhibited by Dam− mutants, mostly during exponential growth. Unexpectedly, lack of Dam methylation neither increased envelope instability nor impaired the association of PAL-Tol-Lpp proteins to the peptidoglycan in Escherichia coli. Accordingly, E. coli Dam− mutants did not show sensitivity to deoxycholate. Altogether, these results indicate that, besides its role in modulating the secretion of effectors by the SPI-1-encoded type III apparatus, Dam methylation controls cell envelope integrity in S. enterica.
-
-
-
Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains
The GenBank/EMBL/DDBJ accession number for the sequences reported in this paper is D64132.
A nonpigmented mutant of Porphyromonas gingivalis was constructed by using transposon mutagenesis. The mutant possessed the transposon DNA at the novel gene porR. Gene targeted mutagenesis revealed that porR was responsible for pigmentation. The porR gene shared similarities with genes of the degT family, the products of which are now considered to be transaminases involved in biosynthesis of sugar portions of cell-surface polysaccharides and aminoglycosides. The porR mutant showed a pleiotropic phenotype: delayed maturation of fimbrillin, preferential presence of Rgp and Kgp proteinases in culture supernatants, and no haemagglutination. The porR mutant had altered phenol extractable polysaccharide compared to the porR + sibling strain. A mAb, 1B5, that reacts with sugar portions of P. gingivalis cell surface polysaccharide and membrane-type Rgp proteinase showed no reaction with the cell lysates of the porR mutant. These results indicate that porR is involved in biosynthesis of cell surface polysaccharide that may function as an anchorage for Rgp, Kgp, haemagglutinins and the haemoglobin receptor protein.
-
-
-
Interaction of human Tamm–Horsfall glycoprotein with Bordetella pertussis toxin
Tamm–Horsfall glycoprotein (THP), which is synthesized by renal tubular cells, is the most abundant protein in normal human urine. Although its physiological function remains unclear, it has been proposed that THP may act as a defence factor against urinary tract infections by inhibiting the binding of S- and P-fimbriated Escherichia coli to renal epithelial cells. Because THP-related proteins are also found in the superficial layers of the oral mucosa, the authors investigated the ability of THP to interfere with the cytoadherence of pathogenic bacteria that colonize mucosal surfaces other than those of the urogenital tract. In this report, it is shown that THP binds to virulent Bordetella pertussis and reduces its adherence to both renal and pulmonary epithelial cells. This cytoadherence inhibitory effect was not observed with a B. pertussis mutant lacking the pertussis toxin (PTX) operon, and was dependent on the direct interaction of THP with the S2 subunit within the PTX B oligomer. The authors also show that the glycosylation moiety of THP is crucial for its binding to PTX. The THP–PTX interaction was exploited to develop an affinity chromatography method that allows a one-step purification of active PTX. These observations suggest that besides its anti-adherence activity, THP may also trap toxins produced by pathogenic bacteria that colonize mucosal surfaces.
-
-
-
Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials
More LessThe GenBank accession numbers for the sequences reported in this paper can be found in Table 2.
The consumption of poultry meat contaminated with Campylobacter jejuni is considered to be a risk factor for human campylobacteriosis. The development of targeted strategies to control campylobacters in broilers would benefit from knowledge of those bacterial factors important in colonization of the avian gut. During preliminary studies it was noted that C. jejuni NCTC 11168 was a poorer colonizer of chickens than strain 81116. This poor colonization could not be fully restored by in vivo passage, suggesting that it was a genetically endowed property of strain 11168. As the genome sequence is available for this strain, the technique of subtractive hybridization was used to identify gene fragments of strain 81116 not present in strain 11168. After two screening cycles, 24 out of 42 clones were identified as having DNA inserts specific for strain 81116. Six of these 24 clones contained gene fragment inserts with similarities to restriction–modification enzymes found in other bacteria. Two inserts had similarity to arsenic-resistance genes, whereas four others had similarities to cytochrome c oxidase III, dTDP-glucose 4,6-dehydratase, γ-glutamyl transpeptidase and an abortive phage-resistance protein. At least some of these genes may be involved with colonization. A further six inserts had weak similarities to hypothetical proteins or to proteins with assigned functions from strain 11168. The remaining six clones had gene-fragment inserts with no database matches. Southern-blot analysis confirmed that strain-dependent variation existed for each of these DNA inserts. These results indicate that subtractive hybridization can successfully identify genes that are absent from the only C. jejuni strain for which the genome sequence is currently available.
-
-
-
The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. strain ADP1
More LessBenM and CatM are distinct, but similar, LysR-type transcriptional regulators of the soil bacterium Acinetobacter sp. strain ADP1. Together, the two regulators control the expression of at least 14 genes involved in the degradation of aromatic compounds via the catechol branch of the β-ketoadipate pathway. In these studies, BenM and CatM were each purified to homogeneity to test the possibility that they regulate the expression of two additional genes, benP and benK, that are adjacent to benM on the chromosome. Each regulator bound to a DNA fragment containing the benP promoter region. Additional transcriptional studies suggested that benP and benK are co-transcribed as an operon, and a site of transcription initiation was identified. Alignment of this initiation site with those of several CatM- and BenM-regulated genes revealed common regulatory motifs. Mutants lacking both CatM and BenM failed to activate benP transcription. The ability of each protein to regulate gene expression was inferred from strains lacking either CatM or BenM that were still capable of increasing benP expression in response to cis,cis-muconate. This compound has previously been shown to induce all enzymes of the catechol branch of the β-ketoadipate pathway through a complex transcriptional circuit involving CatM and BenM. Thus, the regulated expression of the benPK operon in concert with other genes of the regulon is consistent with the model that BenP, a putative outer-membrane porin, and BenK, an inner-membrane permease, transport aromatic compounds in strain ADP1.
-
-
-
Difference in substrate specificity divides the yeast alkali-metal-cation/H+ antiporters into two subfamilies
More LessYeast plasma membrane Na+/H+ antiporters (TC 2.A.36) share a high degree of similarity at the protein level. Expression of four antiporters (Saccharomyces cerevisiae Nha1p, Candida albicans Cnh1p, Zygosaccharomyces rouxii ZrSod2-22p and Schizosaccharomyces pombe sod2p) in a Sacch. cerevisiae mutant strain lacking both Na+-ATPase and Na+/H+ antiporter genes made it possible to study the transport properties and contribution to cell salt tolerance of all antiporters under the same conditions. The ZrSod2-22p of the osmotolerant yeast Z. rouxii has the highest transport capacity for lithium and sodium but, like the Schiz. pombe sod2p, it does not recognize K+ and Rb+ as substrates. The Sacch. cerevisiae Nha1p and C. albicans Cnh1p have a broad substrate specificity for at least four alkali metal cations (Na+, Li+, K+, Rb+), but their contribution to overall cell tolerance to high external concentration of toxic Na+ and Li+ cations seems to be lower compared to the antiporters of Schiz. pombe and especially Z. rouxii.
-
-
-
Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio
More LessThe GenBank accession numbers for the sequences reported in this paper are AF388386 (Vp23), AF388387 (Vp16), AF388388 (F44), AF388389 (Vp27), AF388390 (F6), AF388391 (3d2), AF388392 (3d4), AF388393 (3d7) and AF388394 (3d8).
Analysis of the 16S rDNAs obtained from cultures of single colonies of either type collection strains or environmental strains of the genus Vibrio revealed the presence of polymorphism in every one of the strains examined. Polymorphism was detected by visualization of heteroduplexes produced after 16S rDNA PCR amplification, a procedure that allows for the screening of a large number of isolates. Amplified 16S rDNAs obtained from both Vibrio parahaemolyticus and an environmental strain were cloned. Their nucleotide sequences revealed differences of up to 2% among 16S rDNAs from the same strain. Polymorphic sites were concentrated in a recognized variable stem–loop of bacterial 16S rRNA that contained in some cases up to 83% of the total mismatches observed. Most of the substitutions present in the stem–loop region showed compensating base covariation. The accumulation of so many compensating changes in the stem–loop region implies that the divergence of the different versions of this stem–loop is relatively ancient. This divergence could be the result of either a selection process or a lateral transfer of independently evolved genes.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
