- Volume 148, Issue 3, 2002
Volume 148, Issue 3, 2002
- Research Paper
-
-
-
npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation b
bThe GenBank accession number for the sequence reported in this paper is AF435009.
Rhodococcus (opacus) erythropolis HL PM-1 grows on 2,4,6-trinitrophenol (picric acid) or 2,4-dinitrophenol (2,4-DNP) as sole nitrogen source. A gene cluster involved in picric acid degradation was recently identified. The functional assignment of three of its genes, npdC, npdG and npdI, and the tentative functional assignment of a fourth one, npdH, is reported. The genes were expressed in Escherichia coli as His-tag fusion proteins that were purified by Ni-affinity chromatography. The enzyme activity of each protein was determined by spectrophotometry and HPLC analyses. NpdI, a hydride transferase, catalyses a hydride transfer from reduced F420 to the aromatic ring of picric acid, generating the hydride σ-complex (hydride Meisenheimer complex) of picric acid (H−-PA). Similarly, NpdI also transformed 2,4-DNP to the hydride σ-complex of 2,4-DNP. A second hydride transferase, NpdC catalysed a subsequent hydride transfer to H−-PA, to produce a dihydride σ-complex of picric acid (2H−-PA). All three reactions required the activity of NpdG, an NADPH-dependent F420 reductase, for shuttling the hydride ions from NADPH to F420. NpdH converted 2H−-PA to a hitherto unknown product, X. The results show that npdC, npdG and npdI play a key role in the initial steps of picric acid degradation, and that npdH may prove to be important in the later stages.
-
-
-
-
Oligomerization of the Bacillus subtilis division protein DivIVA
DivIVA appears to be a mediator of inhibition by MinCD of division at the cell poles in Bacillus subtilis. Gel permeation and ultracentrifugation techniques were used to show self-association of DivIVA into a form consisting of 10–12 monomers in vitro. Western blot analysis of non-denaturating polyacrylamide gels confirms the presence of similar oligomers in B. subtilis cell lysates. These oligomers persist in a B. subtilis strain containing the divIVA1 mutation, in which proper vegetative septum positioning is abolished. In contrast, the divIVA2 mutation, which has a similar biological impact, appears to produce a protein with different oligomerization properties. The results of the present study suggest that oligomerization of DivIVA is important, but not sufficient for its function in the cell division process.
-
-
-
Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation
The EMBL accession numbers for the nucleotide sequences reported in this paper are AJ313428, AJ318465, AJ318466, AJ318467, AJ318468, AJ318469 and AJ318470.
The tar genes directing the synthesis of poly(ribitol phosphate), the main teichoic acid in Bacillus subtilis strain W23, were sequenced. They are organized in two divergently transcribed operons, tarABIJKL and tarDF, as are the tag genes specifying poly(glycerol phosphate) synthesis in B. subtilis 168. The features of the tar genes as well as the putative participation of their products in the proposed biosynthesis pathway of poly(ribitol phosphate) are presented. The tarA and tarD genes, which are most likely involved in the synthesis of the linkage unit (the entity coupling teichoic acid to peptidoglycan), are separated by 508 nt. Sequences of the outer segments of this regulatory region are similar to the two divergent promoter regions identified upstream of the tagA and tagD genes in strain 168. However, in W23, these regions, which also included functional promoters, are separated by an additional DNA segment of about 100 nt, on which two new mRNA starts, one in each direction, were identified. The regulatory regions of teichoic acid divergons of Bacillus globigii, Bacillus licheniformis and eight strains of B. subtilis were cloned and sequenced. In four B. subtilis strains and in B. globigii, their length and sequence are similar to the regulatory region of W23. In the others, including B. licheniformis, they are of the 168-type. Analysis of nucleotide sequences of a non-coding grey hole, present in the tag region of strain 168, revealed higher similarities to tar than to tag entities. This suggests that at least part of the tag genes specifying the synthesis of glucosylated poly(glycerol phosphate) in strain 168 was introduced by horizontal gene transfer into a strain originally synthesizing a ribitol-phosphate-containing teichoic acid.
-
-
-
Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a haem–copper protein
The GenBank accession number for nnrS is U62403.
Upstream of the nor and nnrR cluster in Rhodobacter sphaeroides 2.4.3 is a previously uncharacterized gene that has been designated nnrS. nnrS is only expressed when 2.4.3 is grown under denitrifying conditions. Expression of nnrS is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including nirK and nor. Deletion analysis indicated the sequence 5′-TTGCG(N4)CACAA-3′, which is similar to sequences found in nirK and nor, is required for nnrS expression. Mutation of this sequence to the consensus Fnr-binding sequence by changing two bases in each half site caused nnrS expression to become nitrate independent. Inactivation of nnrS did not affect nitric oxide metabolism, nor did it affect expression of any of the genes involved in nitric oxide metabolism. However, taxis towards nitrate and nitrite was affected by nnrS inactivation. Purification of a histidine-tagged NnrS demonstrated that NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase.
-
-
-
Regulation of the expression of prtW::gusA fusions in Erwinia carotovora subsp. carotovora
More LessErwinia carotovora subsp. carotovora, a Gram-negative phytopathogenic bacterium, secretes an extracellular metalloprotease, PrtW. Previous results demonstrated that protease activity is necessary for the normal progression of disease symptoms caused by this bacterium. The present study revealed that the prtW gene constitutes an independent transcriptional unit. It is demonstrated that introduction of the prtW + plasmid in trans into the prtW − mutant restores the protease activity in this strain. Gene fusions to the gusA (β-glucuronidase) reporter were employed to analyse the transcription of prtW. The transcription of prtW is dependent on many environmental signals. When the bacteria were grown in the presence of potato extract, the expression of the protease gene was markedly higher at the beginning of the exponential phase of growth than that observed when cells were grown in the presence of polygalacturonate (PGA). Analysis of the promoter revealed that an essential regulatory region resided between 371 and 245 bp 5′ of the translational start site. As this sequence showed no homology to the KdgR box it may be involved in the binding of an unknown negative regulator protein in E. carotovora subsp. carotovora. The differential responses of prtW expression to potato extract and to PGA appeared to be dependent on the KdgR repressor and the response regulator ExpA. According to the results presented here, it is conceivable that the multiple regulatory network allows flexibility in the expression of the prtW gene during different stages of infection.
-
-
-
Metabolism of sucrose and its five isomers by Fusobacterium mortiferum
More LessFusobacterium mortiferum utilizes sucrose [glucose-fructose in α(1→2) linkage] and its five isomeric α-D-glucosyl-D-fructoses as energy sources for growth. Sucrose-grown cells are induced for both sucrose-6-phosphate hydrolase (S6PH) and fructokinase (FK), but the two enzymes are not expressed above constitutive levels during growth on the isomeric compounds. Extracts of cells grown previously on the sucrose isomers trehalulose α(1→1), turanose α(1→3), maltulose α(1→4), leucrose α(1→5) and palatinose α(1→6) contained high levels of an NAD+ plus metal-dependent phospho-α-glucosidase (MalH). The latter enzyme was not induced during growth on sucrose. MalH catalysed the hydrolysis of the 6′-phosphorylated derivatives of the five isomers to yield glucose 6-phosphate and fructose, but sucrose 6-phosphate itself was not a substrate. Unexpectedly, MalH hydrolysed both α- and β-linked stereomers of the chromogenic analogue p-nitrophenyl glucoside 6-phosphate. The gene malH is adjacent to malB and malR, which encode an EII(CB) component of the phosphoenolpyruvate-dependent sugar:phosphotransferase system and a putative regulatory protein, respectively. The authors suggest that for F. mortiferum, the products of malB and malH catalyse the phosphorylative translocation and intracellular hydrolysis of the five isomers of sucrose and of related α-linked glucosides. Genes homologous to malB and malH are present in both Klebsiella pneumoniae and the enterohaemorrhagic strain Escherichia coli O157:H7. Both these organisms grew well on sucrose, but only K. pneumoniae exhibited growth on the isomeric compounds.
-
-
-
Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans
More LessEnergy metabolism of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans strain Z-7935 was investigated in continuous culture and in physiological experiments on washed cells. When grown in chemostats with H2 as electron donor, the cells had extrapolated growth yields [Y max, g dry cell mass (mol electron acceptor)−1] of 5·5 with sulfate and 12·8 with thiosulfate. The maintenance energy coefficients were 1·9 and 1·3 mmol (g dry mass)−1 h−1, and the minimum doubling times were 27 and 20 h with sulfate and thiosulfate, respectively. Cell suspensions reduced sulfate, thiosulfate, sulfite, elemental sulfur and molecular oxygen in the presence of H2. In the absence of H2, sulfite, thiosulfate and sulfur were dismutated to sulfide and sulfate. Sulfate and sulfite were only reduced in the presence of sodium ions, whereas sulfur was reduced also in the absence of Na+. Plasmolysis experiments showed that sulfate entered the cells via an electroneutral symport with Na+ ions. The presence of an electrogenic Na+–H+ antiporter was demonstrated in experiments applying monensin (an artificial electroneutral Na+–H+ antiporter) and propylbenzylylcholine mustard.HCl (a specific inhibitor of Na+–H+ antiporters). Sulfate reduction was sensitive to uncouplers (protonophores), whereas sulfite reduction was not affected. Changes in pH upon lysis of washed cells with butanol indicated that the intracellular pH was lower than the optimum pH for growth (pH 9·5). Pulses of NaCl (0·52 M) to cells incubated in the absence of Na+ did not result in ATP formation, whereas HCl pulses (shifting the pH from 9·2 to 7·0) did. Small oxygen pulses, which were reduced within a few seconds, caused a transient alkalinization. The results of preliminary experiments with chemiosmotic inhibitors provided further evidence that the alkalinization was caused by sodium–proton antiport following a primary electron-transport-driven sodium ion translocation. It is concluded that energy conservation in D. hydrogenovorans depends on a proton-translocating ATPase, whereas electron transport appears to be coupled to sodium ion translocation.
-
-
-
The NtcA-activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942
More LessThe GenBank accession number for the nucleotide sequence of the amt1 gene described in this paper is AJ311900.
In the unicellular cyanobacterium Synechococcus sp. PCC 7942, ammonium/methylammonium transport activity has been characterized but ammonium transport genes have not been described. The amt1 gene encoding a permease responsible for high-affinity [14C]methylammonium transport in Synechococcus sp. PCC 7942 was cloned and inactivated. The Amt1 permease appeared essential to take up ammonium when it was present at low concentrations in the external medium and might also be involved in recapture of ammonium leaked out from the cells. Expression of amt1, which was induced in the absence of ammonium and also influenced by the inorganic carbon supply, was dependent on the NtcA transcriptional regulator. The promoter of amt1 was found to exhibit the structure of NtcA-activated promoters, and specific binding of purified NtcA to amt1 promoter sequences was observed. The results of this study indicate that amt1 belongs to the NtcA regulon and that NtcA may respond to both nitrogen and carbon availability.
-
-
-
Characterization of the replicator region of megaplasmid pTAV3 of Paracoccus versutus and search for plasmid-encoded traits
More LessThe GenBank accession number for the sequence reported in this paper is AF390867.
The replicon of the pTAV3 megaplasmid (approx. 400 kb) of Paracoccus versutus has been localized to a 4·3 kb EcoRI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62–66 mol%) previously determined for P. versutus total DNA. ORF1 encodes a replication initiation protein Rep (47·2 kDa), which shares substantial similarity with putative proteins of the Coxiella burnetii plasmids QpH1 and QpDV, and the replication protein of Pseudomonas syringae plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the repABC family of replicons found in several plasmids of Agrobacterium, Rhizobium and Paracoccus spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant (inc) was localized between ORF1 (rep) and ORF2 (parA). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of P. versutus UW1 and pKLW2 of Paracoccus pantotrophus DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing oriV of pTAV3 cloned into plasmid pABW1, which does not replicate in Paracoccus spp.) can be trans activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of Paracoccus alcaliphilus JCM 7364, Paracoccus thiocyanatus IAM 12816 and Paracoccus methylutens DM 12.
-
-
-
Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa
More LessThe 102 aa Hfq protein of Escherichia coli (Hfq Ec ) was first described as a host factor required for phage Qβ replication. More recently, Hfq was shown to affect the stability of several E. coli mRNAs, including ompA mRNA, where it interferes with ribosome binding, which in turn results in rapid degradation of the transcript. In contrast, Hfq is also required for efficient translation of the E. coli and Salmonella typhimurium rpoS gene, encoding the stationary σ factor. In this study, the authors have isolated and characterized the Hfq homologue of Pseudomonas aeruginosa (Hfq Pa ), which consists of only 82 aa. The 68 N-terminal amino acids of Hfq Pa show 92% identity with Hfq Ec . Hfq Pa was shown to functionally replace Hfq Ec in terms of its requirement for phage Qβ replication and for rpoS expression. In addition, Hfq Pa exerted the same negative effect on E. coli ompA mRNA expression. As judged by proteome analysis, the expression of either the plasmid-borne hfq Pa or the hfq Ec gene in an E. coli Hfq− RpoS− strain revealed no gross difference in the protein profile. Both Hfq Ec and Hfq Pa affected the synthesis of approximately 26 RpoS-independent E. coli gene products. These studies showed that the functional domain of Hfq resides within its N-terminal domain. The observation that a C-terminally truncated Hfq Ec lacking the last 27 aa [Hfq Ec(75)] can also functionally replace the full-length E. coli protein lends further support to this notion.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)