- Volume 146, Issue 12, 2000
Volume 146, Issue 12, 2000
- Genomics
-
-
-
The Oenococcus oeni genome: physical and genetic mapping of strain GM and comparison with the genome of a ‘divergent’ strain, PSU-1
More LessThe physical and genetic maps of the Oenococcus oeni strains GM and PSU-1, which represent two genomic divergent groups on the basis of macrorestriction and ribotyping analysis, were compared. To achieve this comparison, the GM maps were constructed and the PSU-1 maps, already established, were improved. All the recognition sites of the restriction enzymes AscI, I-CeuI, FseI, NotI and SfiI were located in both chromosomes and the position of 26 genetic markers, including two rrn operons and 14 new putative oenococcal genes, were allocated to the restriction fragments generated by the five enzymes. The comparative analysis of O. oeni GM and PSU-1 genomes revealed extensive conservation of loci order. As for the differences encountered in the locations of restriction sites, they seem to be a reflection of the differences in restriction fragment sizes, explainable by insertion/deletion events and point mutations. No evidence for major genomic rearrangements was found. The genomic conservation between the two strains is in agreement and suggests homogeneity within the species, which was not unexpected in view of the restricted ecological niche of O. oeni. Further comparisons of physical maps, both of O. oeni strains and related species, will certainly help to assess whether O. oeni is really an homogeneous species and physical mapping is suitable for taxonomic purposes, both at the supra- and intraspecific levels.
-
-
-
-
Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551
The genome sequences of two virulent strains of Mycobacterium tuberculosis (H37Rv and CDC 1551) are now available. CDC 1551 is a recent clinical isolate and H37Rv is a commonly used lab strain which has been subject to in vitro passage. The two strains have been shown to display differing phenotypes both in vivo and in vitro. The proteome of the two strains grown in liquid culture were examined over time to determine whether there are any major differences between them at the protein level and the differences were compared to the genome data. Total cell lysates of the two strains were analysed by two-dimensional electrophoresis. Approximately 1750 protein spots were visualized by silver staining and the protein profiles of the two strains were found to be highly similar. Out of a total of 17 protein spot differences, seven were unique to CDC 1551 and three to H37Rv. Two further spots showed increased intensity in H37Rv, one spot showed differing vertical mobility between the strains and four showed differing spot intensities with time. Twelve of the spot differences were identified using mass spectrometry; however, no obvious association with phenotype could be deduced. When genome differences were analysed and related to the proteome differences, a mobility shift identified in the MoxR protein could be explained by a point mutation at the gene level. This proteome analysis reveals that, despite having been maintained under vastly different conditions, namely in vitro passage and in vivo transmission, these two strains have remained highly similar.
-
- Pathogenicity And Medical Microbiology
-
-
-
Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus
More LessHaemolysis of erythrocytes from different species (sheep, bovine, swine and human), caused by various combinations of phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC), sphingomyelinase (SMase) and the three-component, pore-forming toxin haemolysin BL (HBL) from Bacillus cereus was analysed. The lytic potency of HBL did not correlate with phospholipid (PL) content, but lysis by the individual or combined enzymes did. SMase alone lysed ruminant erythrocytes, which contain 46–53% sphingomyelin (SM). The cooperative action of PC-PLC and SMase was needed to lyse swine and human erythrocytes (22–31% PC and 28–25% SM). SMase synergistically enhanced haemolysis caused by HBL for all erythrocytes tested, which all contained >25% SM. PC-PLC enhanced HBL haemolysis only in cells containing significant amounts of PC (swine, 22% PC; human, 31% PC). Unexpectedly, PC-PLC inhibited HBL lysis of sheep erythrocytes (<2% PC) and enhanced the discontinuous haemolysis pattern that is characteristic of HBL in sheep blood agar. Inhibition and pattern enhancement was abolished by washing PC-PLC-treated erythrocytes or by adding EDTA, suggesting that enzymic alteration of the membrane is not involved, but that zinc in the active site is required, perhaps to facilitate binding. These observations highlight the potential for cooperative and synergistic interactions among virulence factors in B. cereus infections and dependence of these effects on tissue composition.
-
-
-
-
The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial
More LessWhole garlic (Allium sativum L.) extract and some of its components were assayed for antigiardial activity. Whole garlic extract gave an IC50 at 24 h of 0·3 mg ml−1. Most of the components assayed were inhibitory to the organism, especially allyl alcohol and allyl mercaptan, with IC50 values of 7 μg ml−1 and 37 μg ml−1 respectively. Studies with calcofluor white indicated that whole garlic and allyl alcohol collapse the transmembrane electrochemical membrane potential (Δψ) of the organism, as indicated by uptake of the fluorochrome. Electron microscopy allowed the morphological changes that occur with garlic inhibition to be recorded. Both the surface topography and internal architecture of the organism changed during incubation with the biocides. Both whole garlic and allyl alcohol resulted in fragmentation of the disc and an overexpression of disc microribbons, internalization of flagella, vacuole formation and an increase in distended vesicles. Allyl mercaptan, however, only gave an increase in distended vesicles, suggesting that this biocide has a different mode of action.
-
-
-
Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum
More LessThe GenBank accession numbers for the sequences reported in this paper are AI982185 for chicken IL-6 cDNA and AJ250838 for the partial chicken IL-6 genomic sequence, respectively.
Salmonella enterica is a facultative intracellular pathogen that is capable of causing disease in a range of hosts. Although human salmonellosis is frequently associated with consumption of contaminated poultry and eggs, and the serotypes Salmonella gallinarum and Salmonella pullorum are important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of Salmonella in the chicken. Type III secretion systems play a key role in host cell invasiveness and trigger the production of pro-inflammatory cytokines during invasion of mammalian hosts. This results in a polymorphonuclear cell influx that contributes to the resulting enteritis. In this study, a chicken primary cell culture model was used to investigate the cytokine responses to entry by the broad host range serotypes S. enteritidis and S. typhimurium, and the host specific serotype S. gallinarum, which rarely causes disease outside its main host, the chicken. The cytokines interleukin (IL)-1β, IL-2, IL-6 and interferon (IFN)-γ were measured by quantitative RT-PCR, and production of IL-6 and IFN-γ was also determined through bioassays. All serotypes were invasive and had little effect on the production of IFN-γ compared with non-infected cells; S. enteritidis invasion caused a slight down-regulation of IL-2 production. For IL-1β production, infection with S. typhimurium had little effect, whilst infection with S. gallinarum or S. enteritidis caused a reduction in IL-1β mRNA levels. Invasion of S. typhimurium and S. enteritidis caused an eight- to tenfold increase in production of the pro-inflammatory cytokine IL-6, whilst invasion by S. gallinarum caused no increase. These findings correlate with the pathogenesis of Salmonella in poultry. S. typhimurium and S. enteritidis invasion produces a strong inflammatory response, that may limit the spread of Salmonella largely to the gut, whilst S. gallinarum does not induce an inflammatory response and may not be limited by the immune system, leading to the severe systemic disease fowl typhoid.
-
-
-
Invasiveness in chickens, stress resistance and RpoS status of wild-type Salmonella enterica subsp. enterica serovar Typhimurium definitive type 104 and serovar Enteritidis phage type 4 strains
The heat and acid resistance and the ability to survive airdrying on commonly used kitchen surfaces were assessed for clinical and environmental strains of Salmonella enterica subsp. enterica serovar Typhimurium, definitive type (DT) 104. Three out of thirty-eight strains of DT 104 were found to be more sensitive in stationary phase to the stresses examined than the other strains. This compares to a previous study by the authors which showed that seven out of forty serovar Enteritidis phage type (PT) 4 strains were more sensitive. RpoS activity was examined indirectly in selected strains of DT 104 and PT 4. In those with normal stress resistance a 100-fold induction of an RpoS-dependent spvR/A′::luxCDABE fusion was observed upon entry into stationary phase. The sensitive strains examined showed either no induction or a reduced level of spvR/A′::luxCDABE expression. The rpoS gene was sequenced from these strains and three were found to harbour mutations including one deletion, one base-pair substitution resulting in a nonsense codon, and one insertion causing a frameshift resulting in an early stop codon. Strains with negligible or reduced spvR/A′::luxCDABE expression had low stress resistance. All strains of DT 104 could be recovered from liver and spleen tissues of infected hens 14 d post-infection, but one with no induction of spvR/A′::luxCDABE expression was significantly less likely to be recovered from chicken reproductive tissues, liver or spleen than the majority of other strains, including one with reduced spvR/A′::luxCDABE expression. This work has demonstrated that clinical and environmental strains of DT 104 and PT 4 not infrequently harbour mutations in the rpoS allele. It is possible that the rpoS mutations may have occurred during the initial isolation of the strains. The ability of a strain to cause infection, however, also depends on factors such as host susceptibility and dose.
-
- Physiology And Growth
-
-
-
The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p
Phosphoribosyl-pyrophosphate synthetase (Prs) catalyses the synthesis of phosphoribosyl pyrophosphate (PRPP), an intermediate in nucleotide metabolism and the biosynthesis of the amino acids histidine and tryptophan. The Saccharomyces cerevisiae genome contains a family of five PRS genes, PRS1–PRS5. Using anti-peptide antisera directed against two different epitopes of Prs1p it was shown that Prs1p localizes to granular cytoplasmic structures. This localization was confirmed by living cell microscopy of strains expressing a functional green fluorescent protein (GFP)-tagged Prs1p. Analysis of Prs1p distribution in conditional secretory-deficient (sec) mutants suggested that the observed distribution of Prs1p is independent of the secretory pathway. Electron microscopy revealed that plasma membrane invaginations and accumulation of cytoplasmic vesicles were more frequent in strains which lack some of the PRS genes than in the wild-type. The fact that Δprs1 and Δprs3 are hypersensitive to caffeine and unable to recover from exposure to it as judged by the release of alkaline phosphatase points to a possible link between Prs and the maintenance of cell integrity.
-
-
-
-
Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation
More LessWhen the spores of filamentous fungi break dormancy, nuclear division is accompanied by a series of ordered morphological events including the switch from isotropic to polar growth, the emergence of a second germ tube from the conidium and septation. Correlation of these morphological events with nuclear number allows them to serve as duplication cycle landmarks. Early duplication cycle landmarks have been characterized in Aspergillus nidulans, but not in other filamentous fungi. To learn more about duplication cycle control in filamentous fungi, a study was undertaken to compare the timing of landmarks in Aspergillus fumigatus and A. nidulans. Nuclear duplication took approximately 45 min in A. fumigatus, with mitosis occupying roughly 5% of this period. Under the same conditions, nuclear duplication in A. nidulans took approximately 60 min, with mitosis occupying roughly 4% of this period. In A. fumigatus the isotropic to polar switch preceded the first mitosis in 22% of cells, while in A. nidulans the isotropic to polar switch did not occur until after the first mitosis. In both A. fumigatus and A. nidulans the earliest emergence of a second germ tube from the conidium occurred after the third mitotic division. However, by the fifth mitosis only 19% of A. fumigatus conidia had a second germ tube, compared to 98% of A. nidulans conidia. In both A. fumigatus and A. nidulans, formation of the first septum occurred after the fourth mitotic division. In all experiments a few cells lagged behind the others in nuclear number. In this delayed group, it was common to see landmark events at an earlier mitotic division. Differences in nuclear number when identical landmarks occur in A. fumigatus versus A. nidulans, and uncoupling of mitotic division and landmarks in delayed cells suggest that nuclear division and morphogenesis lie in parallel pathways, perhaps coordinated by checkpoints.
-
- Corrigendum
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)