- Volume 145, Issue 12, 1999
Volume 145, Issue 12, 1999
- Physiology And Growth
-
-
-
In situ proton-NMR analyses of Escherichia coli HB101 fermentations in 1H2O and in D2O
More LessExperiments using one-dimensional Fourier-transform proton-NMR spectrometry for non-invasive analyses of microbial fermentations in situ, in vivo and in normal aqueous buffer are described. Analyses of the ‘mixed acid’ fermentation during growth of Escherichia coli on glucose and citrate were performed to identify and quantitatively estimate the concentrations of the two substrates provided and of the six products formed without sampling from the NMR tube. Identification of fermentation substrates and products was achieved by coincidence of selected diagnostic proton signals of individual compounds in the same solvent. The complete time course of growth of E. coli in the NMR tube correlated well with that of the same culture grown outside the magnet, with samples taken for proton-NMR analyses. The entire course of these in situ proton measurements during growth over 16–24 h was obtained automatically, usually unattended overnight. Thus, the utilization and formation of eight substances in the fermentation were monitored simultaneously, in normal 1H2O, without sampling and individual analysis. Several metabolic changes could be readily detected during the fermentations. Additionally, the pH changes were estimated from the chemical shifts of the acetate signal as growth progressed. The effect of varying D2O concentrations in the solvent on growth rates and product yields was examined, and the increase in the complexity of signals given by these fermentations is described. This versatile and rapid method for the simultaneous, direct and automatic analysis of mixtures of many compounds has the potential to be extended to routine on-line analyses of industrial fermentations.
-
-
-
-
S-layer protein production by Corynebacterium strains is dependent on the carbon source
Three strains of Corynebacterium producing various amounts of PS2 S-layer protein were studied. For all strains, more PS2 was produced if the bacteria were grown in minimal medium supplemented with lactate than if they were grown in minimal medium supplemented with glucose. The consumption of substrate and PS2 production was studied in cultures with mixed carbon sources. It was found that the inhibitory effect of glucose consumption was stronger than the stimulatory effect of lactate in one strain, but not in the other two strains. The regulation of gene expression involved in S-layer formation may involve metabolic pathways, which probably differ between strains. S-layer organization was also studied by freeze-fracture electron microscopy. It was found that low levels of PS2 production correlated with the partial covering of the cell surface by a crystalline array. Finally, it was found that PS2 production was mainly regulated by changes in gene expression and that secretion was probably not a limiting step in PS2 accumulation.
-
-
-
Transcriptional analysis of the Bacillus subtilis teichuronic acid operon
More LessThe cell walls of Gram-positive bacteria consist primarily of a macromolecular matrix comprising similar amounts of peptidoglycan and covalently attached anionic polymers. Under most growth conditions the anionic polymers of Bacillus subtilis are principally teichoic acids; in strain 168 these include a polyglycerol teichoic acid and a glucose/galactosamine-containing teichoic acid. However, when cultures are subjected to phosphate stress the bacterium induces a complex series of responses, one of which is the replacement of at least part of the wall teichoic acid with teichuronic acid, a non-phosphate- containing anionic polymer. In this paper the construction of a transcriptional reporter strain that facilitates the monitoring of the promoter region upstream of the tua operon involved in teichuronic acid synthesis and its controlled expression are reported. The expression of the tua operon was monitored in both phosphate-starved, non-growing batch cultures and phosphate-limited continuous cultures. We show that the transcription of the operon correlates well with the anionic polymer composition of the cell walls.
-
- Plant-Microbe Interactions
-
-
-
A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity in Cochliobolus carbonum
More LessThe GenBank accession number for the nucleotide sequence reported in this paper is AF157629.
The cyclic tetrapeptide HC-toxin is required for pathogenicity of the filamentous fungus Cochliobolus carbonum on maize. HC- toxin production is controlled by a complex locus, TOX2. The isolation and characterization of a new gene of the TOX2 locus, TOXF, is reported. It is shown that TOXF is specifically required for HC-toxin production and pathogenicity. It is present as two or three copies in all HC-toxin-producing (Tox2+ ) isolates and is absent in toxin-non-producing strains. The deduced amino acid sequence of TOXF has moderate homology to many known or putative branched-chain-amino-acid transaminases from various species. A strain of C. carbonum with all copies of TOXF disrupted grew normally but lost HC-toxin production and pathogenicity. It is proposed that TOXF has a biosynthetic role in HC-toxin synthesis, perhaps to aminate a precursor of Aeo (2- amino-9,10-epoxi-8-oxodecanoic acid).
-
-
-
-
Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora
More LessThe GenBank accession number for the sequences determined in this work is AJ238884.
The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild- type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild- type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)