- Volume 141, Issue 11, 1995
Volume 141, Issue 11, 1995
- Physiology And Growth
-
-
-
The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus
More LessSummary: Aflatoxins are highly toxic and carcinogenic compounds produced by certain Aspergillus species on agricultural commodities. The presence of fatty acid hydroperoxides, which can form in plant material either preharvest under stress or postharvest under improper storage conditions, correlates with high levels of aflatoxin production. Effects on fungal growth and aflatoxin production are known for only a few of the numerous plant metabolites of fatty acid hydroperoxides. Jasmonic acid (JA), a plant growth regulator, is a metabolite of 13-hydroperoxylinolenic acid, derived from α-linolenic acid. The volatile methyl ester of JA, methyl jasmonate (MeJA), is also a plant growth regulator. In this study we report the effect of MeJA on aflatoxin production and growth of Aspergillus flavus. MeJA at concentrations of 10−3-10−8 M in the growth medium inhibited aflatoxin production, by as much as 96%. Exposure of cultures to MeJA vapour similarly inhibited aflatoxin production. The amount of aflatoxin produced depended on the timing of the exposure. MeJA treatment also delayed spore germination and inhibited the production of a mycelial pigment. These fungal responses resemble plant jasmonate responses.
-
-
-
-
The role of glutaminase in Rhizobium etli: studies with a new mutant
More LessSummary: In order to examine the role of glutaminase in Rhizobium etli, we isolated and characterized a R. etli glutaminase mutant (LM16). This mutant was selected for its impaired ability to grow on glutamine as nitrogen and carbon source while retaining the ability to grow on other nitrogen and carbon sources. The mutant showed very low levels of glutaminase activity under various growth conditions in comparison with the wild-type strain. With glutamine as the only nitrogen and carbon source, LM16 showed poor growth, with a very high content of glutamine, low glutamate content, and reduced ammonium excretion and 14CO2 evolution from [U-14C]glutamine compared to the wild-type strain. This indicates that the main role of R. etli glutaminase is in the use of glutamine as carbon source. R. etli glutaminase also plays a role in maintaining the balance between glutamate and glutamine, as shown by the accumulation of glutamine and the low glutamate content of the mutant under different growth conditions. These results also indicate that glutaminase participates in a glutamine cycle in which it degrades glutamine which is then resynthesized by glutamine synthetase. The higher glutamine and lower glutamate content found in bacteroids of LM16 in comparison with bacteroids of the wild-type strain indicate that glutamine degradation by glutaminase plays an important role during the symbiosis between R. etli and Phaseolus vulgaris.
-
-
-
Insertional inactivation of the Streptococcus mutans dexA (dextranase) gene results in altered adherence and dextran catabolism
More LessSummary: Streptococcus mutans is able to synthesize extracellular glucans from sucrose which contribute to adherence of these bacteria. Extracellular dextranase can partially degrade the glucans, and may therefore affect virulence of S. mutans. In order to isolate mutants unable to produce dextranase, a DNA library was constructed by inserting random Sau3AI-digested fragments of chromosomal DNA from S. mutans into the BamHI site of the streptococcal integration vector pVA891, which is able to replicate in Escherichia coli but does not possess a streptococcal origin of replication. The resultant plasmids were introduced into S. mutans LT11, allowing insertional inactivation through homologous recombination. Two transformants were identified which did not possess dextranase activity. Integration of a single copy of the plasmid into the chromosome of these transformants was confirmed by Southern hybridization analysis. Chromosomal DNA fragments flanking the plasmid were recovered using a marker rescue technique, and sequenced. Comparison with known sequences using the blastx program showed 56% homology at the amino acid level between the sequenced gene fragment and dextranase from Streptococcus sobrinus, strongly suggesting that the S. mutans dextranase gene (dexA) had been inactivated. The colony morphology of the dextranase mutants when grown on Todd-Hewitt agar containing sucrose was altered compared to the parent strain, with an apparent build-up of extracellular polymer. The mutants were also more adherent to a smooth surface than LT11 but there was no apparent difference in sucrose-dependent cell-cell aggregation. In contrast to LT11, neither the dexA mutants nor a mutant in the dexB gene, which encodes a dextran glucosidase, were able to ferment dextran to produce acid, supporting an earlier hypothesis that both enzymes are required for metabolism of dextran. From the results obtained by inactivating the dexA gene, a role for dextranase is suggested in controlling the amount and nature of extracellular glucans, in adherence of S. mutans, and in the utilization of glucans as a carbohydrate source.
-
-
-
Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae
More LessSummary: Saccharomyces cerevisiae was more resistant to cadmium when the growth medium contained excess iron. Cadmium reduced the amount of iron taken up by cells during growth, and the cell ferrireductase activity was also strongly inhibited. These effects depended on the YAP1 and CAD1/YAP2 gene dosage. The growth rate of cells in iron-deficient conditions and their ferrireductase activity in the absence of added cadmium were also strongly affected by the dosage of YAP1 and CAD1/YAP2 genes. Our results suggest an indirect influence of these genes on iron metabolism, possibly via modification of the cell redox status.
-
-
-
Aerotaxis in Halobacterium salinarium is methylation-dependent
More LessSummary: The behavioural response to a gradient of oxygen (aerotaxis) has been characterized in the archaeon, Halobacterium salinarium. When the gas surrounding a drop of H. salinarium strain S9-P culture was changed abruptly from 10% (v/v) O2 to 100% N2, the bacteria transiently increased the frequency of reversing before they adapted and resumed random swimming. When the gas was returned to 10% O2 the bacteria responded by swimming smoothly for approximately 45 s. Aerotaxis was strongest when respiration in H. salinarium was highest and when bacteriorhodopsin and halorhodopsin were not contributing to the proton motive force. Starvation for methionine of the auxotrophic H. salinarium essentially abolished the step-down aerotactic response. Methanol production from demethylation of methyl-accepting chemotaxis proteins was transiently increased in H. salinarium S9-P by a step down or step up in oxygen concentration, as observed in methylation-dependent chemotaxis in H. salinarium. The taxis-negative and methyltransferase-deficient mutant, H. salinarium strain Pho72 did not exhibit changes in methanol release in response to aerotaxis or chemotaxis stimuli. This is the first report of an aerotactic response that is dependent on methylation of methyl-accepting chemotaxis proteins. Aerotaxis in Escherichia coli and Salmonella typhimurium is independent of transducer methylation.
-
-
-
A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH
More LessSummary: The structural components in cell walls of three mutants of a facultative alkaliphile, Bacillus lentus C-125, defective in certain cell-wall components were characterized in detail. The cell walls of the wild-type C-125 were thick and increased in thickness when grown at high pH. Electron microscopy showed that triple layers developed when the bacteria were grown in an alkaline environment. In contrast, cell walls of teichuronopeptide (TUP)-defective mutants consisted of a single layer. For both the wild-type and mutants, the cell-wall concentrations of the acidic structural polymers teichuronic acid and TUP increased with respect to peptidoglycan as culture pH increased. For all four strains, the anion content of their cell walls was the greatest at high pH. The cell-wall density of the negatively charged compounds (uronic acids plus L-glutamic acid) was calculated as about 3 and 9 equivalents (I cell wall region)−1 for C-125 cells grown at pH 7 and 10, respectively. At high pH, the specific growth rates of the two TUP-defective mutants were much lower than those of the wild-type. It is concluded that increased levels of acidic polymers in the cell walls of alkaliphilic bacteria may be a necessary adaptation for growth at elevated pH.
-
- Plant-Microbe Interactions
-
-
-
The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum
More LessSummary: The induction of chitinolytic enzymes in the biocontrol agent Trichoderma harzianum during parasitism on Sclerotium rolfsii and the role of fungal-fungal recognition in this process were studied. A change in the chitinolytic enzyme profile was detected during the interaction between the fungi, grown in dual culture on synthetic medium. Before coming into contact with each other, both fungi contained a protein with constitutive 1,4-bT-N-acetylglucosaminidase activity. As early as 12 h after contact, the chitinolytic activity in S. rolfsii disappeared, while that of T. harzianum (a protein with a molecular mass of 102 kDa, CHIT 102) greatly increased. After 24 h of interaction, the activity of CHIT 102 diminished concomitantly with the appearance of a 73 kDa 1,4--N-acetylglucosaminidase, which became clear and strong at 48 h. This phenomenon did not occur if the S. rolfsii mycelium was autoclaved prior to incubation with T. harzianum, suggesting its dependence on vital elements from the host. Cycloheximide inhibited this phenomenon, indicating that de novo synthesis of enzymes is taking place in Trichoderma during these stages of the parasitism. A biomimetic system based on the binding of a purified surface lectin from the host S. rolfsii to nylon fibres was used to dissect the effect of recognition. An increase in CHIT 102 activity was detected, suggesting that the induction of chitinolytic enzymes in Trichoderma is an early event which is elicited by the recognition signal (i.e. lectin-carbohydrate interactions). It is postulated that recognition is the first step in a cascade of antagonistic events which triggers the parasitic response in Trichoderma.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)