1887

Abstract

causes the enteric redmouth disease or yersiniosis, an important systemic fish infection. In an attempt to dissect the virulence mechanisms of this bacterium, a gene encoding a putative protein involved in the secretion/activation of a haemolysin (), which had been previously identified by expression technology, was further analysed. The gene precedes another ORF () encoding a -type haemolysin. Other toxins belonging to this group have been identified in genomic analyses of human-pathogenic yersiniae, although their role and importance in pathogenicity have not been defined yet. In spite of its being an -induced gene, the expression of can be induced under certain conditions similar to those encountered in the host, as deduced from the results obtained by using a  : :  fusion. Thus, higher levels of expression were obtained at 18 °C, the temperature of occurrence of disease outbreaks, than at 28 °C, the optimal growth temperature. The expression of the haemolysin also increased under iron-starvation conditions. This confirmed the decisive role of iron and temperature as environmental cues that regulate and coordinate the expression of genes encoding extracellular factors involved in the virulence of . LD and cell culture experiments, using and insertional mutant strains, demonstrated the participation of the haemolysin in the virulence of and also its cytolytic properties against the BF-2 fish cell line. Finally, a screening for the production of haemolytic activity and the presence of and genes in 12 strains proved once more the genetic homogeneity of this species, since all possessed both haemolytic activity and the and genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29284-0
2007-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/483.html?itemId=/content/journal/micro/10.1099/mic.0.29284-0&mimeType=html&fmt=ahah

References

  1. Austin, D. A., Robertson, P. A. W. & Austin, B. ( 2003; ). Recovery of a new biogroup of Yersinia ruckeri from diseased rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 26, 127–131.[CrossRef]
    [Google Scholar]
  2. Braun, V., Günter, H., Nuess, B. & Tautz, C. ( 1985; ). Hemolytic activity of Serratia marcescens. Arch Microbiol 141, 371–376.[CrossRef]
    [Google Scholar]
  3. Brillard, J., Duchaud, E., Boemare, N., Kunst, F. & Givaudan, A. ( 2002; ). The PhlA haemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of haemolysins. J Bacteriol 184, 3871–3878.[CrossRef]
    [Google Scholar]
  4. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  5. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Yersinia pestis. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  6. Fernández, L., Secades, P., López, J. R., Márquez, I. & Guijarro, J. A. ( 2002; ). Isolation and analysis of a protease gene with an ABC transport system in the fish pathogen Yersinia ruckeri: insertional mutagenesis and involvement in virulence. Microbiology 148, 2233–2243.
    [Google Scholar]
  7. Fernández, L., López, J. R., Secades, P., Menéndez, A., Márquez, I. & Guijarro, J. A. ( 2003; ). In vitro and in vivo studies of the Yrp1 protease from Yersinia ruckeri and its role in protective immunity against enteric red mouth disease of salmonids. Appl Environ Microbiol 69, 7328–7335.[CrossRef]
    [Google Scholar]
  8. Fernández, L., Márquez, I. & Guijarro, J. A. ( 2004; ). Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system. Appl Environ Microbiol 70, 5199–5207.[CrossRef]
    [Google Scholar]
  9. Fouz, B., Zarza, C. & Amaro, C. ( 2006; ). First description of non-motile Yersinia ruckeri serovar I strains causing disease in rainbow trout, Oncorhynchus mykiss (Walbaum), cultured in Spain. J Fish Dis 29, 339–346.[CrossRef]
    [Google Scholar]
  10. Hertle, R., Hilger, M., Weingardt-Kocher, S. & Walev, I. ( 1999; ). Cytotoxic action of Serratia marcescens haemolysin on human epithelial cells. Infect Immun 67, 817–825.
    [Google Scholar]
  11. Hirono, I., Tange, N. & Aoki, T. ( 1997; ). Iron-regulated haemolysin gene from Edwardsiella tarda. Mol Microbiol 24, 851–856.[CrossRef]
    [Google Scholar]
  12. Konkel, M. E. & Tilly, K. ( 2000; ). Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2, 157–166.[CrossRef]
    [Google Scholar]
  13. Kotetishvili, M., Kreger, A., Wauters, G., Morris, J. G., Sulakvelidze, A. & Stine, O. C. ( 2005; ). Multilocus sequence typing for studying genetic relationships among Yersinia species. J Clin Microbiol 43, 2674–2684.[CrossRef]
    [Google Scholar]
  14. Litwin, C. M. & Calderwood, S. B. ( 1993; ). Role of iron in regulation of virulence genes. Clin Microbiol Rev 6, 137–149.
    [Google Scholar]
  15. Mahan, M. J., Tobias, J. W., Slauch, J. M., Hanna, P. C., Collier, R. J. & Mekalanos, J. J. ( 1995; ). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 92, 669–673.[CrossRef]
    [Google Scholar]
  16. Mekalanos, J. J. ( 1992; ). Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174, 1–7.
    [Google Scholar]
  17. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics, p. 354. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Palmer, K. L., Goldman, W. E. & Munson, R. S. ( 1996; ). An isogenic haemolysin-deficient mutant of Haemophilus ducreyi lacks the ability to produce cytopathic effects on human foreskin fibroblasts. Mol Microbiol 21, 13–19.[CrossRef]
    [Google Scholar]
  19. Poole, K., Schiebel, E. & Braun, V. ( 1988; ). Molecular characterisation of the haemolysin determinant of Serratia marcescens. J Bacteriol 170, 3177–3188.
    [Google Scholar]
  20. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  21. Romalde, J. L. & Toranzo, A. E. ( 1993; ). Pathological activities of Yersinia ruckeri, the enteric redmouth (ERM) bacterium. FEMS Microbiol Lett 112, 291–300.[CrossRef]
    [Google Scholar]
  22. Romalde, J. L., Conchas, R. F. & Toranzo, A. E. ( 1991; ). Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Lett 80, 121–126.[CrossRef]
    [Google Scholar]
  23. Romalde, J. L., Magariños, B., Barja, J. L. & Toranzo, A. E. ( 1993; ). Antigenic and molecular characterization of Yersinia ruckeri: proposal for a new intraspecies classification. Syst Appl Microbiol 16, 411–419.[CrossRef]
    [Google Scholar]
  24. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Schiebel, E., Schwarz, H. & Braun, V. ( 1989; ). Subcellular location and unique secretion of the hemolysin of Serratia marcescens. J Biol Chem 264, 16311–16320.
    [Google Scholar]
  26. Schönherr, R., Tsolis, R., Focareta, T. & Braun, V. ( 1993; ). Amino acid replacements in the Serratia marcescens haemolysin ShlA define sites involved in activation and secretion. Mol Microbiol 9, 1229–1237.[CrossRef]
    [Google Scholar]
  27. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  28. Straley, S. C. & Perry, R. D. ( 1995; ). Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbiol 3, 310–317.[CrossRef]
    [Google Scholar]
  29. Strauss, E. J., Ghori, N. & Falkow, S. ( 1997; ). An Edwardsiella tarda strain containing a mutation in a gene with homology to shlB and hpmB is defective for entry into epithelial cells in culture. Infect Immun 65, 3924–3932.
    [Google Scholar]
  30. Williams, M. L. & Lawrence, M. L. ( 2005; ). Identification and characterisation of a two-component haemolysin from Edwardsiella ictaluri. Vet Microbiol 108, 281–289.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29284-0
Loading
/content/journal/micro/10.1099/mic.0.29284-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error