1887

Abstract

Upregulation of the (ultirug esistance 1) gene is involved in the development of resistance to antifungal agents in clinical isolates of the pathogen . To better understand the molecular mechanisms underlying the phenomenon, the -acting regulatory elements present in the promoter were characterized using a -galactosidase reporter system. In an azole-susceptible strain, transcription of this reporter is transiently upregulated in response to either benomyl or HO, whereas its expression is constitutively high in an azole-resistant strain (FR2). Two -acting regulatory elements within the promoter were identified that are necessary and sufficient to confer the same transcriptional responses on a heterologous promoter (). One, a enomyl esponse lement (BRE), is situated at position −296 to −260 with respect to the ATG start codon. It is required for benomyl-dependent upregulation and is also necessary for constitutive high expression of . A second element, termed O esponse lement (HRE), is situated at position −561 to −520. The HRE is required for HO-dependent upregulation, but dispensable for constitutive high expression. Two potential binding sites (TTAG/CTAA) for the bZip transcription factor Cap1p ( AP-1 protein) lie within the HRE. Moreover, inactivation of abolished the transient response to HO. Cap1p, which has been previously implicated in cellular responses to oxidative stress, may thus play a -acting and positive regulatory role in the HO-dependent transcription of . A minimal BRE (−290 to −273) that is sufficient to detect sequence-specific binding of protein complexes in crude extracts prepared from was also defined. Interestingly, the sequence includes a perfect match to the consensus binding sequence of Mcm1p, raising the possibility that may be a direct target of this MADS box transcriptional activator. In conclusion, while the identity of the -acting factors that bind to the BRE and HRE remains to be confirmed, the tools developed during this characterization of the -acting elements of the promoter should now serve to elucidate the nature of the components that modulate its activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29277-0
2006-12-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3701.html?itemId=/content/journal/micro/10.1099/mic.0.29277-0&mimeType=html&fmt=ahah

References

  1. Alarco, A. M. & Raymond, M. ( 1999; ). The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181, 700–708.
    [Google Scholar]
  2. Alarco, A. M., Balan, I., Talibi, D., Mainville, N. & Raymond, M. ( 1997; ). AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272, 19304–19313.[CrossRef]
    [Google Scholar]
  3. Albertson, G. D., Niimi, M., Cannon, R. D. & Jenkinson, H. F. ( 1996; ). Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40, 2835–2841.
    [Google Scholar]
  4. Ben-Yaacov, R., Knoller, S., Caldwell, G. A., Becker, J. M. & Koltin, Y. ( 1994; ). Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 38, 648–652.[CrossRef]
    [Google Scholar]
  5. Broco, N., Tenreiro, S., Viegas, C. A. & Sa-Correia, I. ( 1999; ). FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator. Yeast 15, 1595–1608.[CrossRef]
    [Google Scholar]
  6. Chang, V. K., Fitch, M. J., Donato, J. J., Christensen, T. W., Merchant, A. M. & Tye, B. K. ( 2003; ). Mcm1 binds replication origins. J Biol Chem 278, 6093–6100.[CrossRef]
    [Google Scholar]
  7. Coleman, D. C., Bennett, D. E., Sullivan, D. J., Gallagher, P. J., Henman, M. C., Shanley, D. B. & Russell, R. J. ( 1993; ). Oral Candida in HIV infection and AIDS: new perspectives/new approaches. Crit Rev Microbiol 19, 61–82.[CrossRef]
    [Google Scholar]
  8. Coste, A., Turner, V., Ischer, F., Morschhauser, J., Forche, A., Selmecki, A., Berman, J., Bille, J. & Sanglard, D. ( 2006; ). A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139–2156.
    [Google Scholar]
  9. de Micheli, M., Bille, J., Schueller, C. & Sanglard, D. ( 2002; ). A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol Microbiol 43, 1197–1214.[CrossRef]
    [Google Scholar]
  10. Fernandes, L., Rodrigues-Pousada, C. & Struhl, K. ( 1997; ). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17, 6982–6993.
    [Google Scholar]
  11. Fling, M. E., Kopf, J., Tamarkin, A., Gorman, J. A., Smith, H. A. & Koltin, Y. ( 1991; ). Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227, 318–329.
    [Google Scholar]
  12. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  13. Franz, R., Kelly, S. L., Lamb, D. C., Kelly, D. E., Ruhnke, M. & Morschhauser, J. ( 1998; ). Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42, 3065–3072.
    [Google Scholar]
  14. Ghannoum, M. A., Rex, J. H. & Galgiani, J. N. ( 1996; ). Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol 34, 489–495.
    [Google Scholar]
  15. Goldway, M., Teff, D., Schmidt, R., Oppenheim, A. B. & Koltin, Y. ( 1995; ). Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother 39, 422–426.[CrossRef]
    [Google Scholar]
  16. Gupta, V., Kohli, A., Krishnamurthy, S., Puri, N., Aalamgeer, S. A., Panwar, S. & Prasad, R. ( 1998; ). Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr Genet 34, 192–199.[CrossRef]
    [Google Scholar]
  17. Hanahan, D. ( 1985; ). Techniques for transformation of E. coli. In DNA Cloning: a Practical Approach 1: Core Techniques, pp. 109–135. Edited by D. M. Glover. Oxford: IRL Press.
  18. Harry, J. B., Oliver, B. G., Song, J. L., Silver, P. M., Little, J. T., Choiniere, J. & White, T. C. ( 2005; ). Drug-induced regulation of the MDR1 promoter in Candida albicans. Antimicrob Agents Chemother 49, 2785–2792.[CrossRef]
    [Google Scholar]
  19. Hiller, D., Stahl, S. & Morschhauser, J. ( 2006; ). Multiple cis-acting sequences mediate upregulation of the MDR1 efflux pump in a fluconazole-resistant clinical Candida albicans isolate. Antimicrob Agents Chemother 50, 2300–2308.[CrossRef]
    [Google Scholar]
  20. Jelinsky, S. A. & Samson, L. D. ( 1999; ). Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96, 1486–1491.[CrossRef]
    [Google Scholar]
  21. Karababa, M., Coste, A. T., Rognon, B., Bille, J. & Sanglard, D. ( 2004; ). Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48, 3064–3079.[CrossRef]
    [Google Scholar]
  22. Keleher, C. A., Goutte, C. & Johnson, A. D. ( 1988; ). The yeast cell-type-specific repressor alpha 2 acts cooperatively with a non-cell-type-specific protein. Cell 53, 927–936.[CrossRef]
    [Google Scholar]
  23. Kuge, S. & Jones, N. ( 1994; ). YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13, 655–664.
    [Google Scholar]
  24. Law, D., Moore, C. B., Wardle, H. M., Ganguli, L. A., Keaney, M. G. & Denning, D. W. ( 1994; ). High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother 34, 659–668.[CrossRef]
    [Google Scholar]
  25. Marr, K. A., Seidel, K., White, T. C. & Bowden, R. A. ( 2000; ). Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis 181, 309–316.[CrossRef]
    [Google Scholar]
  26. Moran, G. P., Sanglard, D., Donnelly, S. M., Shanley, D. B., Sullivan, D. J. & Coleman, D. C. ( 1998; ). Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42, 1819–1830.
    [Google Scholar]
  27. Nguyen, D. T., Alarco, A. M. & Raymond, M. ( 2001; ). Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 276, 1138–1145.[CrossRef]
    [Google Scholar]
  28. Passmore, S., Maine, G. T., Elble, R., Christ, C. & Tye, B. K. ( 1988; ). Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J Mol Biol 204, 593–606.[CrossRef]
    [Google Scholar]
  29. Passmore, S., Elble, R. & Tye, B. K. ( 1989; ). A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev 3, 921–935.[CrossRef]
    [Google Scholar]
  30. Rex, J. H., Rinaldi, M. G. & Pfaller, M. A. ( 1995; ). Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 39, 1–8.[CrossRef]
    [Google Scholar]
  31. Rottmann, M., Dieter, S., Brunner, H. & Rupp, S. ( 2003; ). A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Mol Microbiol 47, 943–959.[CrossRef]
    [Google Scholar]
  32. Sa-Correia, I. & Tenreiro, S. ( 2002; ). The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 98, 215–226.[CrossRef]
    [Google Scholar]
  33. Sanglard, D. & Odds, F. C. ( 2002; ). Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2, 73–85.[CrossRef]
    [Google Scholar]
  34. Sanglard, D., Kuchler, K., Ischer, F., Pagani, J. L., Monod, M. & Bille, J. ( 1995; ). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39, 2378–2386.[CrossRef]
    [Google Scholar]
  35. Sanglard, D., Ischer, F., Monod, M. & Bille, J. ( 1996; ). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40, 2300–2305.
    [Google Scholar]
  36. Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A. & Bille, J. ( 1999; ). The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43, 2753–2765.
    [Google Scholar]
  37. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. ( 1998; ). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.[CrossRef]
    [Google Scholar]
  38. Taglicht, D. & Michaelis, S. ( 1998; ). Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 292, 130–162.
    [Google Scholar]
  39. Tenreiro, S., Fernandes, A. R. & Sa-Correia, I. ( 2001; ). Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochem Biophys Res Commun 280, 216–222.[CrossRef]
    [Google Scholar]
  40. Toone, W. M. & Jones, N. ( 1999; ). AP-1 transcription factors in yeast. Curr Opin Genet Dev 9, 55–61.[CrossRef]
    [Google Scholar]
  41. Uhl, M. A. & Johnson, A. D. ( 2001; ). Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans. Microbiology 147, 1189–1195.
    [Google Scholar]
  42. Wang, Y., Cao, Y. Y., Jia, X. M., Cao, Y. B., Gao, P. H., Fu, X. P., Ying, K., Chen, W. S. & Jiang, Y. Y. ( 2006; ). Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 40, 1201–1209.[CrossRef]
    [Google Scholar]
  43. White, T. C. ( 1997; ). Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41, 1482–1487.
    [Google Scholar]
  44. White, T. C., Pfaller, M. A., Rinaldi, M. G., Smith, J. & Redding, S. W. ( 1997; ). Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Dis 3, S102–S109.[CrossRef]
    [Google Scholar]
  45. White, T. C., Marr, K. A. & Bowden, R. A. ( 1998; ). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11, 382–402.
    [Google Scholar]
  46. Wirsching, S., Michel, S., Kohler, G. & Morschhauser, J. ( 2000a; ). Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 182, 400–404.[CrossRef]
    [Google Scholar]
  47. Wirsching, S., Michel, S. & Morschhauser, J. ( 2000b; ). Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36, 856–865.[CrossRef]
    [Google Scholar]
  48. Wynne, J. & Treisman, R. ( 1992; ). SRF and MCM1 have related but distinct DNA binding specificities. Nucleic Acids Res 20, 3297–3303.[CrossRef]
    [Google Scholar]
  49. Zhang, X., De Micheli, M., Coleman, S. T., Sanglard, D. & Moye-Rowley, W. S. ( 2000; ). Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol 36, 618–629.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29277-0
Loading
/content/journal/micro/10.1099/mic.0.29277-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error