1887

Abstract

When grown anaerobically on a succinate+nitrate (SN) medium, forms the membrane-bound, cytoplasmically oriented, chlorate-reducing nitrate reductase Nar, while the periplasmic enzyme Nap is expressed during aerobic growth on butyrate+oxygen (BO) medium. Preincubation of SN cells with chlorate produced a concentration-dependent decrease in nitrate utilization, which could be ascribed to Nar inactivation. Toluenization rendered Nar less sensitive to chlorate, but more sensitive to chlorite, suggesting that the latter compound may be the true inactivator. The Nap enzyme of BO cells was inactivated by both chlorate and chlorite at concentrations that were at least two orders of magnitude lower than those shown to affect Nar. Partial purification of Nap resulted in insensitivity to chlorate and diminished sensitivity to chlorite. Azide was specific for SN cells in protecting nitrate reductase against chlorate attack, the protective effect of nitrate being more pronounced in BO cells. The results are discussed in terms of different metabolic activation of chlorine oxoanions in both types of cells, and limited permeation of chlorite across the cell membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29276-0
2006-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3529.html?itemId=/content/journal/micro/10.1099/mic.0.29276-0&mimeType=html&fmt=ahah

References

  1. Aberg, B. ( 1947; ). On the mechanism of the toxic action of chlorates and some related substances upon young wheat plants. Kungl Lantbrukshogsk Ann 15, 37–107.
    [Google Scholar]
  2. Alefounder, P. R. & Ferguson, S. J. ( 1980; ). The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase in Paracoccus denitrificans. Biochem J 192, 231–240.
    [Google Scholar]
  3. Bell, L. C., Page, M. D., Berks, B. C., Richardson, D. J. & Ferguson, S. J. ( 1993; ). Insertion of transposon Tn5 into a structural gene of the membrane-bound nitrate reductase of Thiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity. J Gen Microbiol 139, 3205–3214.[CrossRef]
    [Google Scholar]
  4. Calder, K., Burke, K. A. & Lascelles, J. ( 1980; ). Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans. Arch Microbiol 126, 149–153.[CrossRef]
    [Google Scholar]
  5. Castillo, F., Dobao, M. M., Reyes, F., Blasco, R., Roldan, M. D., Gavira, M., Caballero, F. J., Moreno-Vivian, C. & Martinez-Luque, M. ( 1996; ). Molecular and regulatory properties of the nitrate reducing systems of Rhodobacter. Curr Microbiol 33, 341–346.[CrossRef]
    [Google Scholar]
  6. Deane-Drummond, C. & Glass, A. D. M. ( 1982; ). Nitrate uptake into barley (Hordeum vulgare) plants. A new approach using as an analog for . Plant Physiol 70, 50–54.[CrossRef]
    [Google Scholar]
  7. Fahraeus, G. ( 1952; ). Influence of nitrate concentration upon chlorate toxicity in microorganisms. Acta Chem Scand 5, 1416–1417.
    [Google Scholar]
  8. Galván, A. & Fernández, E. ( 2001; ). Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci 58, 225–233.[CrossRef]
    [Google Scholar]
  9. Goksoyr, J. ( 1951; ). On the effect of chlorate upon the nitrate reduction of plants. I. Experiments with Aspergillus oryzae. Physiol Plant 4, 498–513.[CrossRef]
    [Google Scholar]
  10. Goksoyr, J. ( 1952; ). On the effect of chlorate upon the nitrate reduction of plants. II. The effect upon the nitrate-reducing system in Escherichia coli. Physiol Plant 5, 228–240.[CrossRef]
    [Google Scholar]
  11. Hewson, W. D. & Hager, L. P. ( 1979; ). Mechanism of chlorination reaction catalyzed by horseradish peroxidase with chlorite. J Biol Chem 254, 3175–3181.
    [Google Scholar]
  12. John, P. ( 1977; ). Aerobic and anaerobic bacterial respiration monitored by electrodes. J Gen Microbiol 98, 231–238.[CrossRef]
    [Google Scholar]
  13. Kelly, H. C., Parigi, K. J., Wilson, I., Davies, D. M., Jones, P. & Roettiger, L. J. ( 1981; ). Chlorite ion oxidation of the iron(III) complex of deuteroporphyrin IX. Inorg Chem 20, 1086–1090.[CrossRef]
    [Google Scholar]
  14. Kosola, K. R. & Bloom, A. J. ( 1996; ). Chlorate as a transport analog for nitrate absorption by roots of tomato. Plant Physiol 110, 1293–1299.
    [Google Scholar]
  15. Kučera, I. ( 2003a; ). Inhibition by phenylglyoxal of nitrate transport in Paracoccus denitrificans: a comparison with the effect of a protonophorous uncoupler. Arch Biochem Biophys 409, 327–334.[CrossRef]
    [Google Scholar]
  16. Kučera, I. ( 2003b; ). Passive penetration of nitrate through the plasma membrane of Paracoccus denitrificans and its potentiation by the lipophilic tetraphenylphosphonium cation. Biochim Biophys Acta 1557, 119–124.[CrossRef]
    [Google Scholar]
  17. Kučera, I. & Kaplan, P. ( 1996; ). A study on the transport and dissimilatory reduction of nitrate in Paracoccus denitrificans using viologen dyes as electron donors. Biochim Biophys Acta 1276, 203–209.[CrossRef]
    [Google Scholar]
  18. Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R. & Castillo, F. ( 1999; ). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181, 6573–6584.
    [Google Scholar]
  19. Noji, S. & Taniguchi, S. ( 1987; ). Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cells. J Biol Chem 262, 9441–9443.
    [Google Scholar]
  20. Perrella, F. W. ( 1988; ). EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal Biochem 174, 437–447.[CrossRef]
    [Google Scholar]
  21. Philippot, L. & Hojberg, O. ( 1999; ). Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta 1446, 1–23.[CrossRef]
    [Google Scholar]
  22. Pichinoty, F., Puig, J., Chippaux, M., Bigliardi-Rouvier, J. & Gendre, J. ( 1969; ). Recherches sur des mutans bactériens ayant perdu les activités catalytiques liées a la nitrate-reductase A. II. Comportement envers le chlorate et le chlorite. Ann Inst Pasteur 116, 409–432 (in French).
    [Google Scholar]
  23. Piéchaud, M., Pichinoty, F., Azoulay, E., Counchound-Beaumont, P. & Gendre, J. ( 1969; ). Recherches sur des mutans bactériens ayant perdu les activités catalytiques liées a la nitrate-reductase A. I. Description des méthodes d'isolement. Ann Inst Pasteur 116, 276–287 (in French).
    [Google Scholar]
  24. Rajagopalan, K. V. & Johnson, J. L. ( 1992; ). The pterin molybdenum cofactors. J Biol Chem 267, 10198–10202.
    [Google Scholar]
  25. Roldan, M. D., Reyes, F., Moreno-Vivian, C. & Castillo, F. ( 1994; ). Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr Microbiol 29, 241–245.[CrossRef]
    [Google Scholar]
  26. Ruiz-Cristin, J. & Briskin, D. P. ( 1991; ). Characterization of a symport associated with plasma membrane vesicles of maize root using as a radiotracer analog. Arch Biochem Biophys 285, 74–82.[CrossRef]
    [Google Scholar]
  27. Rusmana, I. & Nedwell, D. B. ( 2004; ). Use of chlorate as a selective inhibitor to distinguish membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of dissimilative nitrate reducing bacteria in sediment. FEMS Microbiol Ecol 48, 379–386.[CrossRef]
    [Google Scholar]
  28. Sears, H. J., Ferguson, S. J., Richardson, D. J. & Spiro, S. ( 1993; ). The identification of a periplasmic nitrate reductase in Paracoccus denitrificans. FEMS Microbiol Lett 113, 107–111.[CrossRef]
    [Google Scholar]
  29. Solomonson, L. P. & Vennesland, B. ( 1972; ). Nitrate reductase and chlorate toxicity in Chlorella vulgaris Beijerinck. Plant Physiol 50, 421–424.[CrossRef]
    [Google Scholar]
  30. Wood, N. J., Alizadeh, T., Bennett, S., Pearce, J., Ferguson, S. J., Richardson, D. J. & Moir, J. W. B. ( 2001; ). Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J Bacteriol 183, 3606–3613.[CrossRef]
    [Google Scholar]
  31. Zhou, J.-J., Theodoulou, F. L., Muldini, I., Ingemarsson, B. & Miller, A. J. ( 1998; ). Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273, 12017–12023.[CrossRef]
    [Google Scholar]
  32. Zhou, J.-J., Trueman, L. J., Boorer, K. J., Theodoulou, F. L., Forde, B. G. & Miller, A. J. ( 2000; ). A high affinity fungal nitrate carrier with two transport mechanisms. J Biol Chem 275, 39894–39899.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29276-0
Loading
/content/journal/micro/10.1099/mic.0.29276-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error