Metabolic flux profiling of grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates Free

Abstract

The metabolic pathways associated with the tricarboxylic acid cycle intermediates of were studied using biosynthetically directed fractional C labelling. Cells were grown aerobically in a chemostat culture fed at two dilution rates (1.39×10 s and 4.44×10 s) with varying mixtures of glycerol and methanol as sole carbon sources. The results show that, with co-assimilation of methanol, the common amino acids are synthesized as in cells grown on glycerol only. During growth at the lower dilution rate, when both substrates are entirely consumed, the incorporation of methanol into the biomass increases as the methanol fraction in the feed is increased. Moreover, the co-assimilation of methanol impacts on how key intermediates of the pentose phosphate pathway (PPP) are synthesized. In contrast, such an impact on the PPP is not observed at the higher dilution rate, where methanol is only partially consumed. This finding possibly indicates that the distribution of methanol carbon into assimilatory and dissimilatory (direct oxidation to CO) pathways are different at the two dilution rates. Remarkably, distinct flux ratios were registered at each of the two growth rates, while the dependency of the flux ratios on the varying fraction of methanol in the medium was much less pronounced. This study brings new insights into the complex regulation of methanol metabolism in the presence of a second carbon source, revealing important implications for biotechnological applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29263-0
2007-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/281.html?itemId=/content/journal/micro/10.1099/mic.0.29263-0&mimeType=html&fmt=ahah

References

  1. Bakker B. M., Overkamp K. M., Luttik M. A. H., Pronk J. T, van Maris A. J. A., Kötter P., van Dijken J. P. 2001; Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae . FEMS Microbiol Rev 25:15–37 [CrossRef]
    [Google Scholar]
  2. Blank L. M., Sauer U. 2004; TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150:1085–1093 [CrossRef]
    [Google Scholar]
  3. Cos O., Ramon R., Montesinos J. L., Valero F. 2006; Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17 [CrossRef]
    [Google Scholar]
  4. Egli T., Fiechter A, Käppeli O. 1982; Mixed substrate growth of methylotrophic yeasts in chemostat culture: influence of the dilution rate on the utilization of a mixture of glucose and methanol. Arch Microbiol 131:8–13 [CrossRef]
    [Google Scholar]
  5. Egli T., Bosshard C., Hammer G. 1986; Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern. Biotechnol Bioeng 28:1735–1741 [CrossRef]
    [Google Scholar]
  6. Fiaux J., Sonderegger M., Szyperski T., Sauer U, Çakar Z. P., Wüthrich K. 2003; Metabolic flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis . Eukaryot Cell 2:170–180 [CrossRef]
    [Google Scholar]
  7. Fischer E., Zamboni N., Sauer U. 2004; High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Chem 325:308–316
    [Google Scholar]
  8. Fredlund E., Blank L. M., Sauer U., Passoth V, Schnürer J. 2004; Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala . Appl Environ Microbiol 70:5905–5911 [CrossRef]
    [Google Scholar]
  9. Harder W., Veenhuis M. 1989; Metabolism of one-carbon compounds. In The Yeasts, Vol. 3, Metabolism and Physiology of Yeasts pp 289–316 Edited by Rose A. H., Harrison J. S. London: Academic Press;
    [Google Scholar]
  10. Hohenblum H., Gasser B., Maurer M., Borth N., Mattanovich D. 2004; Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris . Biotechnol Bioeng 85:367–375 [CrossRef]
    [Google Scholar]
  11. Jones J. G., Bellion E. 1991; Methanol oxidation and assimilation in Hansenula polymorpha . An analysis by13C n.m.r. in vivo . Biochem J 280:475–481
    [Google Scholar]
  12. Jones E. W., Fink G. R. 1982; Regulation of amino acid and nucleotide biosynthesis in yeast. In The Molecular Biology of the Yeast Saccharomyces – Metabolism and Gene Expression pp 181–299 Edited by Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Lin Cereghino G. P., Lin Cereghino J., Ilgen C., Cregg J. M. 2002; Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris . Curr Opin Biotechnol 13:329–332 [CrossRef]
    [Google Scholar]
  14. Lin Cereghino J., Cregg J. M. 2000; Heterologous protein expression in the methylotrophic yeast Pichia pastoris . FEMS Microbiol Rev 24:45–66 [CrossRef]
    [Google Scholar]
  15. Maaheimo H., Fiaux J., Bailey J. E., Sauer U., Szyperski T, Çakar Z. P. 2001; Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268:2464–2479 [CrossRef]
    [Google Scholar]
  16. Michal G. 1998 Biochemical Pathways: an Atlas of Biochemistry and Molecular Biology New York: Wiley;
    [Google Scholar]
  17. Minning S., Serrano A., Ferrer P., Schmid R. D., Valero F, Solà C. 2001; Optimisation of the high-level production of Rhizopus oryzae lipase in Pichia pastoris . J Biotechnol 86:59–70 [CrossRef]
    [Google Scholar]
  18. Prinz B., Schultchen J., Rydzewski R., Holz C., Boettner M., Stahl U., Lang C. 2004; Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5:29–44 [CrossRef]
    [Google Scholar]
  19. Sauer U., Hatzimanikatis V., Bailey J. E., Hochuli M., Szyperski T., Wüthrich K. 1997; Metabolic fluxes in riboflavin-producing Bacillus subtilis . Nat Biotechnol 15:448–452 [CrossRef]
    [Google Scholar]
  20. Sauer U., Lasko D. R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Bailey J. E, Wüthrich K. 1999; Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688
    [Google Scholar]
  21. Sauer M., Branduardi P., Gasser B., Valli M., Maurer M., Porro D., Mattanovich D. 2004; Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microb Cell Fact 3:17 [CrossRef]
    [Google Scholar]
  22. Solà A. 2004 Estudi del metabolisme central del carboni de Pichia pastoris PhD thesis Universitat Autònoma de Barcelona; Catalonia, Spain:
    [Google Scholar]
  23. Solà A. Maaheimo H., Ferrer P., Szyperski T, Ylölen K. 2004; Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris . Eur J Biochem 271:2462–2470 [CrossRef]
    [Google Scholar]
  24. Stratton J., Chiruvolu V., Meagher M. 1998; High cell-density fermentation. Methods Mol Biol 103:107–120
    [Google Scholar]
  25. Szyperski T. 1995; Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448 [CrossRef]
    [Google Scholar]
  26. Szyperski T. 1998; 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106 [CrossRef]
    [Google Scholar]
  27. Szyperski T., Glaser R. W., Hochuli M., Fiaux J., Sauer U., Bailey J., Wüthrich K. 1999; Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C-labeling and two dimensional NMR spectroscopy. Metab Eng 1:189–197 [CrossRef]
    [Google Scholar]
  28. Takada Y., Noguchi T. 1985; Characteristics of alanine : glyoxylate aminotransferase from Saccharomyces cerevisiae , a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates. Biochem J 231:157–163
    [Google Scholar]
  29. Voet D., Voet J. G. 1995 Biochemistry New York: Wiley;
    [Google Scholar]
  30. Yokoyama S. 2003; Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43 [CrossRef]
    [Google Scholar]
  31. Zhang W., Hywood Potter K. J., Plantz B. A., Schlegel V. L., Smith L. A., Meagher M. M. 2003; Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J Ind Microbiol Biotechnol 30:201–215
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29263-0
Loading
/content/journal/micro/10.1099/mic.0.29263-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed