1887

Abstract

accumulates high levels of trehalose, especially in response to stress. The pathways for trehalose metabolism were characterized, and their roles in response to osmotic, oxidative and acid stress were studied. Two pathways were identified: the trehalose-6-phosphate synthase/phosphatase (OtsA–OtsB) pathway, and the trehalose synthase (TreS) pathway. The former was used for trehalose synthesis, whereas the latter is proposed to operate in trehalose degradation. The activities of OtsA, OtsB and TreS were detected in cell extracts; the corresponding genes were identified, and the recombinant proteins were characterized in detail. In crude extracts of , OtsA was specific for ADP-glucose, in contrast to the pure recombinant OtsA, which used UDP-, GDP- and TDP-glucose, in addition to ADP-glucose. Moreover, the substrate specificity of OtsA in cell extracts was lost during purification, and the recombinant OtsA became specific to ADP-glucose upon incubation with a dialysed cell extract. The level of OtsA was enhanced (approximately twofold) by osmotic, oxidative and acid stress, whereas the level of TreS remained constant, or it decreased, under identical stress conditions. Therefore, the OtsA–OtsB pathway plays an important role in the synthesis of trehalose in response to stress. It is most likely that trehalose degradation proceeds via TreS to yield maltose, which is subsequently catabolized via amylomaltase activity. Hydrolytic activities that are potentially involved in trehalose degradation (trehalase, trehalose phosphorylase, trehalose-6-phosphate phosphorylase and trehalose-6-phosphate hydrolase) were not present. The role of trehalose as a common response to three distinct stresses is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29262-0
2007-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/270.html?itemId=/content/journal/micro/10.1099/mic.0.29262-0&mimeType=html&fmt=ahah

References

  1. Aisaka, K., Masuda, T. & Chikamune, T. ( 1996; ). Properties of maltose phosphorylase from Propionibacterium freudenreichii. J Ferment Bioeng 82, 171–173.[CrossRef]
    [Google Scholar]
  2. Ames, B. N. ( 1966; ). Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8, 115–118.
    [Google Scholar]
  3. Andersson, U., Levander, F. & Rådström, P. ( 2001; ). Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J Biol Chem 276, 42707–42713.[CrossRef]
    [Google Scholar]
  4. Argüelles, J. C. ( 2000; ). Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174, 217–224; erratum 174, 456.
    [Google Scholar]
  5. Belocopitow, E. & Maréchal, L. R. ( 1970; ). Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta 198, 151–154.[CrossRef]
    [Google Scholar]
  6. Benaroudj, N., Lee, D. H. & Goldberg, A. L. ( 2001; ). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276, 24261–24267.[CrossRef]
    [Google Scholar]
  7. Brüggemann, H., Henne, A., Hoster, F., Liesegang, H., Wiezer, A., Strittmatter, A., Hujer, S., Durre, P. & Gottschalk, G. ( 2004; ). The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305, 671–673.[CrossRef]
    [Google Scholar]
  8. Cánovas, D., Fletcher, S. A., Hayashi, M. & Csonka, L. N. ( 2001; ). Role of trehalose in growth at high temperature of Salmonella enterica serovar Typhimurium. J Bacteriol 183, 3365–3371.[CrossRef]
    [Google Scholar]
  9. Cardoso, F. S., Gaspar, P., Hughenholtz, J., Ramos, A. & Santos, H. ( 2004; ). Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91, 195–204.[CrossRef]
    [Google Scholar]
  10. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544; erratum 396, 190.
    [Google Scholar]
  11. da Costa, M. S., Santos, H. & Galinski, E. A. ( 1998; ). An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61, 117–153.
    [Google Scholar]
  12. De Smet, K. A., Weston, A., Brown, I. N., Young, D. B. & Robertson, B. D. ( 2000; ). Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146, 199–208.
    [Google Scholar]
  13. De Virgilio, C., Hottiger, T., Dominguez, J., Boller, T. & Wiemken, A. ( 1994; ). The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219, 179–186.[CrossRef]
    [Google Scholar]
  14. Elbein, A. D. ( 1968; ). Trehalose phosphate synthesis in Streptomyces hygroscopicus: purification of guanosine diphosphate d-glucose : d-glucose-6-phosphate 1-glucosyl-transferase. J Bacteriol 96, 1623–1631.
    [Google Scholar]
  15. Elbein, A. D. Y. T., Pan, Y. T., Pastuszak, I. & Carroll, D. ( 2003; ). New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R.[CrossRef]
    [Google Scholar]
  16. Fütterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., Dock, C., Antranikian, G. & Liebl, W. ( 2004; ). Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101, 9091–9096.[CrossRef]
    [Google Scholar]
  17. Giæver, H. M., Styrvold, O. B., Kaasen, I. & Strom, A. R. ( 1988; ). Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170, 2841–2849.
    [Google Scholar]
  18. Horlacher, R., Uhland, K., Klein, W., Ehrmann, M. & Boos, W. ( 1996; ). Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178, 6250–6257.
    [Google Scholar]
  19. Huang, Y. & Adams, M. C. ( 2004; ). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91, 253–260.[CrossRef]
    [Google Scholar]
  20. Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Metivier, D., Kroemer, G. & Brenner, C. ( 2002; ). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9, 179–188.[CrossRef]
    [Google Scholar]
  21. Kalinowski, J., Bathe, B., Bartels, D. & 24 other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  22. Killick, K. A. ( 1979; ). Trehalose-6-phosphate synthase from Dictyostelium discoideum: partial purification and characterization of the enzyme from young sorocarps. Arch Biochem Biophys 196, 121–133.[CrossRef]
    [Google Scholar]
  23. Lapp, D., Patterson, B. W. & Elbein, A. D. ( 1971; ). Properties of a trehalose phosphate synthase from Mycobacterium smegmatis. J Biol Chem 246, 4567–4579.
    [Google Scholar]
  24. Makihara, F., Tsuzuki, M., Sato, K., Masuda, S., Nagashima, K. V., Abo, M. & Okubo, A. ( 2005; ). Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol 184, 56–65.[CrossRef]
    [Google Scholar]
  25. Maréchal, L. R. & Belocopitow, E. ( 1972; ). Metabolism of trehalose in Euglena gracilis. I. Partial purification and some properties of trehalose phosphorylase. J Biol Chem 247, 3223–3228.
    [Google Scholar]
  26. Maruta, K., Nakada, T., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M. & Tsujisaka, Y. ( 1995; ). Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci Biotechnol Biochem 59, 1829–1834.[CrossRef]
    [Google Scholar]
  27. Nakada, T., Maruta, K., Tsusaki, K., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M. & Tsujisaka, Y. ( 1995; ). Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem 59, 2210–2214.[CrossRef]
    [Google Scholar]
  28. Nishimoto, T., Nakano, M., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M. & Tsujisaka, Y. ( 1996; ). Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60, 640–644.[CrossRef]
    [Google Scholar]
  29. Pan, Y. T., Carroll, J. D. & Elbein, A. D. ( 2002; ). Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur J Biochem 269, 6091–6100.[CrossRef]
    [Google Scholar]
  30. Pereira, H. ( 1997; ). The relationship between carbon and phosphorous metabolism of polyphosphate-accumulating bacteria: in vivo NMR studies. PhD thesis, New University of Lisbon, Lisbon, Portugal.
  31. Phillips, N. F., Horn, P. J. & Wood, H. G. ( 1993; ). The polyphosphate- and ATP-dependent glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein. Arch Biochem Biophys 300, 309–319.[CrossRef]
    [Google Scholar]
  32. Qu, Q., Lee, S.-J. & Boos, W. ( 2004; ). TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279, 47890–47897.[CrossRef]
    [Google Scholar]
  33. Reinders, A., Burckert, N., Hohmann, S., Thevelein, J. M., Boller, T., Wiemken, A. & De Virgilio, C. ( 1997; ). Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24, 687–695.[CrossRef]
    [Google Scholar]
  34. Rimmele, M. & Boos, W. ( 1994; ). Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol 176, 5654–5664.
    [Google Scholar]
  35. Roessner, C. A., Huang, K. X., Warren, M. J., Raux, E. & Scott, A. I. ( 2002; ). Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148, 1845–1853.
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Santos, H. & da Costa, M. S. ( 2001; ). Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol 334, 302–315.
    [Google Scholar]
  38. Silva, Z., Alarico, S., Nobre, A., Horlacher, R., Marugg, J., Boos, W., Mingote, A. I. & da Costa, M. S. ( 2003; ). Osmotic adaptation of Thermus thermophilus RQ-1: lesson from a mutant deficient in synthesis of trehalose. J Bacteriol 185, 5943–5952.[CrossRef]
    [Google Scholar]
  39. Silva, Z., Alarico, S. & da Costa, M. S. ( 2005; ). Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Extremophiles 9, 29–36.[CrossRef]
    [Google Scholar]
  40. Smith, D. E. & Fisher, P. A. ( 1984; ). Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J Cell Biol 99, 20–28.[CrossRef]
    [Google Scholar]
  41. Stjernholm, R. ( 1958; ). Formation of trehalose during dissimilation of glucose by Propionibacterium. Acta Chem Scan 12, 646–649.[CrossRef]
    [Google Scholar]
  42. Strom, A. R. & Kaasen, I. ( 1993; ). Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8, 205–210.[CrossRef]
    [Google Scholar]
  43. Uhland, K., Mondigler, M., Spiess, C., Prinz, W. & Ehrmann, M. ( 2000; ). Determinants of translocation and folding of TreF, a trehalase of Escherichia coli. J Biol Chem 275, 23439–23445.[CrossRef]
    [Google Scholar]
  44. Wolf, A., Krämer, R. & Morbach, S. ( 2003; ). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49, 1119–1134.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29262-0
Loading
/content/journal/micro/10.1099/mic.0.29262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error