1887

Abstract

To better understand genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one , two , two and 48 isolates. For , these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented strains MC58, Z2491 and FAM18, and FA1090. By comparing hybridization data to genome sequences, the core genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between and . However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29261-0
2006-12-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3733.html?itemId=/content/journal/micro/10.1099/mic.0.29261-0&mimeType=html&fmt=ahah

References

  1. Achtman M. 1995; Global epidemiology of meningococcal disease. In Meningococcal Disease pp. 159–175 Edited by Cartwright K.. Wiley;
  2. Aguilera J.-F, Perrocheau A, Meffre C, Group T. W. W, Hahné S. 2002; Outbreak of the serogroup W135 meningococcal disease after the Hajj pilgrimage Europe. 2000; Emerg Infect Dis8:761–767[CrossRef]
    [Google Scholar]
  3. Angelos J. A, Hess J. F, George L. W. 2003; An RTX operon in hemolytic Moraxella bovis is absent from nonhemolytic strains. Vet Microbiol92:363–377[CrossRef]
    [Google Scholar]
  4. Bille E, Zahar J. R, Perrin A. 7 other authors 2005; A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med201:1905–1913[CrossRef]
    [Google Scholar]
  5. Bovre K. 1984; Family VIII. Neisseriaceae . In Bergey's Manual of Systematic Bacteriology pp. 288–296 Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
  6. Brämer C. O, Steinbüchel A. 2001; The methylcitric acid pathway in Ralstonia eutropha : new genes identified involved in propionate metabolism. Microbiology147:2203–2214
    [Google Scholar]
  7. Claus H, Friedrich A, Frosch M, Vogel U. 2000; Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis . J Bacteriol182:1296–1303[CrossRef]
    [Google Scholar]
  8. Claus H, Borrow R, Achtman M, Morelli G, Kantelberg C, Longworth E, Frosch M, Vogel U. 2004; Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol51:227–239
    [Google Scholar]
  9. Comanducci M, Bambini S, Brunelli B. 12 other authors 2002; NadA, a novel vaccine candidate of Neisseria meningitidis . J Exp Med195:1445–1454[CrossRef]
    [Google Scholar]
  10. Dempsey J. A, Litaker W, Madhure A, Snodgrass T. L, Cannon J. G. 1991; Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes. J Bacteriol173:5476–5486
    [Google Scholar]
  11. Dietrich G, Kurz S, Theiss S, Guckenberger M, Panzner U, Weber J, Frosch M, Hübner C, Aepinus C. 2003; Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol185:155–164[CrossRef]
    [Google Scholar]
  12. Dolan-Livengood J. M, Miller Y. K, Martin L. E, Urwin R, Stephens D. S. 2003; Genetic basis for nongroupable Neisseria meningitidis . J Infect Dis187:1616–1628[CrossRef]
    [Google Scholar]
  13. Engelberg-Kulka H, Glaser G. 1999; Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol53:43–70[CrossRef]
    [Google Scholar]
  14. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton J. C. D. 2003; Unraveling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol47:103–118
    [Google Scholar]
  15. Feil E, Zhou J, Maynard Smith J, Spratt B. G. 1996; A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk . J Mol Evol43:631–640[CrossRef]
    [Google Scholar]
  16. Feil E. J, Holmes E. C, Bessen D. E. 9 other authors 2001; Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci U S A98:182–187[CrossRef]
    [Google Scholar]
  17. Graur D, Li W.-H. 2000; In Fundamentals of Molecular Evolution , 2nd edn. pp. 209–210 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  18. Grifantini R, Bartolini E, Muzzi A. 14 other authors 2002; Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol20:914–921[CrossRef]
    [Google Scholar]
  19. Janda W. M, Knapp J. S. 2003; Neisseria and Moraxella catarrhalis . In Manual of Clinical Microbiology pp. 585–608 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H.. Washington, DC: American Society for Microbiology;
  20. Kahler C. M, Blum E, Miller Y. K, Ryan D, Popovic T, Stephens D. S. 2001; exl , an exchangeable genetic island in Neisseria meningitidis . Infect Immun69:1687–1696[CrossRef]
    [Google Scholar]
  21. Kim C. C, Joyce E. A, Chan K, Falkow S. 2002; Improved analytical methods for microarray-base genome-composition analysis. Genome Biol3: research0065.0061–0065.0017
    [Google Scholar]
  22. Kyaw M. H, Lynfield R, Schaffner W. 14 other authors 2006; Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae . N Engl J Med354:1455–1463[CrossRef]
    [Google Scholar]
  23. Lindroos H. L, Mira A, Repsilber D, Vinnere O, Naslund K, Dehio M, Dehio C, Andersson S. G. 2005; Characterization of the genome composition of Bartonella koehlerae by microarray comparative genomic hybridization profiling. J Bacteriol187:6155–6165[CrossRef]
    [Google Scholar]
  24. Linz B, Schenker M, Zhu P, Achtman M. 2000; Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis . Mol Microbiol36:1049–1058[CrossRef]
    [Google Scholar]
  25. Maiden M. C. J, Bygraves J. A, Feil E. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145[CrossRef]
    [Google Scholar]
  26. Masignani V, Giuliani M. M, Tettelin H, Comanducci M, Rappuoli R, Scarlato V. 2001; Mu-like prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens. Infect Immun69:2580–2588[CrossRef]
    [Google Scholar]
  27. McAllister C. F, Stephens D. S. 1993; Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol10:13–23[CrossRef]
    [Google Scholar]
  28. McGuinness B. T, Clarke I. N, Lambden P. R, Barlow A. K, Poolman J. T, Jones D. M, Heckels J. E. 1991; Point mutation in meningococcal Por-A gene associated with increased endemic disease. Lancet337:514–517[CrossRef]
    [Google Scholar]
  29. Merz A. J, So M. 2000; Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol16:423–457[CrossRef]
    [Google Scholar]
  30. Nassif X, Pujol C, Morand P, Eugène E. 1999; Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle?. Mol Microbiol32:1124–1132[CrossRef]
    [Google Scholar]
  31. Nelson K. E, Paulsen I. T, Fraser C. M. 2001; Microbial genome sequencing: a window into evolution and physiology. ASM News67:310–317
    [Google Scholar]
  32. Oster P, Lennon D, O'Hallahan J, Mulholland K, Reid S, Martin D. 2005; MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine23:2191–2196[CrossRef]
    [Google Scholar]
  33. Parkhill J, Achtman M, James K. D. 25 other authors 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature404:502–506[CrossRef]
    [Google Scholar]
  34. Perrin A, Nassif X, Tinsley C. 1999; Identification of regions of the chromosome of Neisseria meningitidis and Neisseria gonorrhoeae which are specific to the pathogenic Neisseria species. Infect Immun67:6119–6129
    [Google Scholar]
  35. Perrin A, Bonacorsi S, Carbonnelle E, Talibi D, Dessen P, Nassif X, Tinsley C. 2002; Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis , the agent of cerebrospinal meningitis, from other Neisseria species. Infect Immun70:7063–7072[CrossRef]
    [Google Scholar]
  36. Pinner R. W, Onyango F, Perkins B. A. 7 other authors 1992; Epidemic meningococcal disease in Nairobi, Kenya, 1989. The Kenya/Centers for Disease Control (CDC) Meningitis Study Group. J Infect Dis166:359–364[CrossRef]
    [Google Scholar]
  37. Pizza M, Scarlato V, Masignani V. 33 other authors 2000; Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science287:1816–1820[CrossRef]
    [Google Scholar]
  38. Raymond N. J, Reeves M, Ajello G, Baughman W, Gheesling L. L, Carlone G. M, Wenger J. D, Stephens D. S. 1997; Molecular epidemiology of sporadic (endemic) serogroup C meningococcal disease. J Infect Dis176:1277–1284[CrossRef]
    [Google Scholar]
  39. Read T. D, Peterson S. N, Tourasse N. 49 other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423:81–86[CrossRef]
    [Google Scholar]
  40. Saeed A. I, Sharove V, White J. 18 other authors 2003; TM4: a free, open-source system for microarray data management and analysis. BioTechniques34:374–378
    [Google Scholar]
  41. Seiler A, Reinhardt R, Sarkari J, Caugant D. A, Achtman M. 1996; Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis . Mol Microbiol19:841–856[CrossRef]
    [Google Scholar]
  42. Snyder L. A, Saunders N. J. 2006; The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica , including those designated as virulence genes. BMC Genomics7:128[CrossRef]
    [Google Scholar]
  43. Snyder L. A, Davies J. K, Saunders N. J. 2004; Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements. BMC Genomics5:23[CrossRef]
    [Google Scholar]
  44. Snyder L. A, Jarvis S. A, Saunders N. J. 2005; Complete and variant forms of the ‘gonococcal genetic island’ in Neisseria meningitidis . Microbiology151:4005–4013[CrossRef]
    [Google Scholar]
  45. Soukas A, Cohen P, Socci N. D, Friedman J. M. 2000; Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev14:963–980
    [Google Scholar]
  46. Stabler R, Hinds J. 2006; The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica , including those designated as virulence genes: response. BMC Genomics7:129[CrossRef]
    [Google Scholar]
  47. Stabler R. A, Marsden G. L, Witney A. A, Li Y, Bentley S. D, Tang C. M, Hinds J. 2005; Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology151:2907–2922[CrossRef]
    [Google Scholar]
  48. Stephens D. S. 1999; Uncloaking the meningococcus: dynamics of carriage and disease. Lancet353:941–942[CrossRef]
    [Google Scholar]
  49. Stone B. J, Brier A, Kwaik Y. A. 1999; The Legionella pneumophila prp locus; required during infection of macrophages and amoebae. Microb Pathog27:368–376
    [Google Scholar]
  50. Sun Y.-H, Bakshi S, Chalmers R, Tang C. M. 2000; Functional genomics of Neisseria meningitidis pathogenesis. Nat Med6:1269–1273[CrossRef]
    [Google Scholar]
  51. Swartley J. S, Marfin A. A, Edupuganti S, Liu L. J, Cieslak P, Perkins B, Wenger J. D, Stephens D. S. 1997; Capsule switching of Neisseria meningitidis . Proc Natl Acad Sci U S A94:271–276[CrossRef]
    [Google Scholar]
  52. Tettelin H, Saunders N. J, Heidelberg J. 39 other authors 2000; Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science287:1809–1815[CrossRef]
    [Google Scholar]
  53. Tettelin H, Nelson K. E, Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science293:498–506[CrossRef]
    [Google Scholar]
  54. Tzeng Y. L, Datta A. K, Strole C. A, Lobritz M. A, Carlson R. W, Stephens D. S. 2005; Translocation and surface expression of lipidated serogroup B capsular polysaccharide in Neisseria meningitidis . Infect Immun73:1491–1505[CrossRef]
    [Google Scholar]
  55. van der Ley P, Poolman J. T. 1992; Construction of a multivalent meningococcal vaccine strain based on the class-1 outer-membrane protein. Infect Immun60:3156–3161
    [Google Scholar]
  56. Wang J. F, Caugant D. A, Li X, Hu X, Poolman J. T, Crowe B. A, Achtman M. 1992; Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in the People's Republic of China. Infect Immun60:5267–5282
    [Google Scholar]
  57. Wang J. F, Caugant D. A, Morelli G, Koumare B, Achtman M. 1993; Antigenic and epidemiologic properties of the ET-37 complex of Neisseria meningitidis . J Infect Dis167:1320–1329[CrossRef]
    [Google Scholar]
  58. Wooldridge K. G, Kizil M, Wells D. B, Ala'aldeen D. A. 2005; Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis . Infect Immun73:5554–5567[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29261-0
Loading
/content/journal/micro/10.1099/mic.0.29261-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error