1887

Abstract

is the aetiological agent of Glässer's disease in swine. In addition, this bacterium causes other clinical outcomes and can also be isolated from the upper respiratory tract of healthy pigs. Isolates of differ in phenotypic features (e.g. protein profiles, colony morphology or capsule production) and pathogenic capacity. Differences among strains have also been demonstrated at the genetic level. Several typing methods have been used to classify field strains, but they had resolution or implementation problems. To overcome these limitations, a multilocus sequence typing (MLST) system, using partial sequences of the house-keeping genes , , , , , and , was developed. Eleven reference strains and 120 field strains were included in this study. The number of alleles per locus ranged from 14 to 41, being the locus with the highest diversity. The high genetic heterogeneity of this bacterium was confirmed with MLST, since the strains were divided into 109 sequence types, and only 13 small clonal complexes were detected by the Burst algorithm. Further analysis by unweighted-pair group method with arithmetic mean (UPGMA) identified six clusters. When the clinical background of the isolates was examined, one cluster was statistically associated with nasal isolation (putative non-virulent), while another cluster showed a significant association with isolation from clinical lesions (putative virulent). The remaining clusters did not show a statistical association with the clinical background of the isolates. Finally, although recombination among strains was detected, two divergent branches were found when a neighbour-joining tree was constructed with the concatenated sequences. Interestingly, one branch included almost all isolates of the putative virulent UPGMA cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29254-0
2006-12-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3683.html?itemId=/content/journal/micro/10.1099/mic.0.29254-0&mimeType=html&fmt=ahah

References

  1. Bigas A, Garrido M. E, Badiola I, Barbe J, Llagostera M, de Rozas A. M. 2005; Development of a genetic manipulation system for Haemophilus parasuis . Vet Microbiol105:223–228[CrossRef]
    [Google Scholar]
  2. Blackall P. J, Trott D. J, Rapp-Gabrielson V, Hampson D. J. 1997; Analysis of Haemophilus parasuis by multilocus enzyme electrophoresis. Vet Microbiol56:125–134[CrossRef]
    [Google Scholar]
  3. Christensen H, Kuhnert P, Olsen J. E, Bisgaard M. 2004; Comparative phylogenies of the housekeeping genes atpD , infB and rpoB and the 16S rRNA gene within the Pasteurellaceae . Int J Syst Evol Microbiol54:1601–1609[CrossRef]
    [Google Scholar]
  4. Cooper J. E, Feil E. J. 2004; Multilocus sequence typing – what is resolved?. Trends Microbiol12:373–377[CrossRef]
    [Google Scholar]
  5. de la Puente-Redondo V. A, del Blanco N. G, Gutierrez-Martin C. B, Mendez J. N, Rodriquez Ferri E. F. 2000; Detection and subtyping of Actinobacillus pleuropneumoniae strains by PCR-RFLP analysis of the tbpA and tbpB genes. Res Microbiol151:669–681[CrossRef]
    [Google Scholar]
  6. de la Puente Redondo V. A, Navas Mendez J, Ladron Boronat N, Gutierrez Martin C. B, Rodriguez Ferri E. F, Garcia del Blanco N. 2003; Typing of Haemophilus parasuis strains by PCR-RFLP analysis of the tbpA gene. Vet Microbiol92:253–262[CrossRef]
    [Google Scholar]
  7. del Rio M. L, Martin C. B, Navas J, Gutierrez-Muniz B, Rodriguez-Barbosa J. I, Rodriguez Ferri E. F. 2006; aroA gene PCR-RFLP diversity patterns in Haemophilus parasuis and Actinobacillus species. Res Vet Sci80:55–61[CrossRef]
    [Google Scholar]
  8. Dingle K. E, Colles F. M, Wareing D. R. 7 other authors 2001; Multilocus sequence typing system for Campylobacter jejuni . J Clin Microbiol39:14–23[CrossRef]
    [Google Scholar]
  9. Enright M. C, Spratt B. G. 1998; A multilocus sequence typing scheme for Streptococcus pneumoniae : identification of clones associated with serious invasive disease. Microbiology144:3049–3060[CrossRef]
    [Google Scholar]
  10. Enright M. C, Spratt B. G. 1999; Multilocus sequence typing. Trends Microbiol7:482–487[CrossRef]
    [Google Scholar]
  11. Enright M. C, Spratt B. G, Kalia A, Cross J. H, Bessen D. E. 2001; Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun69:2416–2427[CrossRef]
    [Google Scholar]
  12. Feavers I. M, Gray S. J, Urwin R, Russell J. E, Bygraves J. A, Kaczmarski E. B, Maiden M. C. 1999; Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol37:3883–3887
    [Google Scholar]
  13. Hall T. 1998; bioedit – Biological Sequence Alignment Editor for Windows North Carolina, USA: Carolina State University;
    [Google Scholar]
  14. Heym B, Le Moal M, Armand-Lefevre L, Nicolas-Chanoine M. H. 2002; Multilocus sequence typing (MLST) shows that the ‘Iberian’ clone of methicillin-resistant Staphylococcus aureus has spread to France and acquired reduced susceptibility to teicoplanin. J Antimicrob Chemother50:323–329[CrossRef]
    [Google Scholar]
  15. Homan W. L, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden J. D, Willems R. J. 2002; Multilocus sequence typing scheme for Enterococcus faecium . J Clin Microbiol40:1963–1971[CrossRef]
    [Google Scholar]
  16. Jolley K. A, Feil E. J, Chan M. S, Maiden M. C. 2001; Sequence type analysis and recombinational tests (START). Bioinformatics17:1230–1231[CrossRef]
    [Google Scholar]
  17. Kielstein P, Rapp-Gabrielson V. J. 1992; Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol30:862–865
    [Google Scholar]
  18. King S. J, Leigh J. A, Heath P. J, Luque I, Tarradas C, Dowson C. G, Whatmore A. M. 2002; Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis : identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol40:3671–3680[CrossRef]
    [Google Scholar]
  19. Kriz P, Kalmusova J, Felsberg J. 2002; Multilocus sequence typing of Neisseria meningitidis directly from cerebrospinal fluid. Epidemiol Infect128:157–160
    [Google Scholar]
  20. Kumar S, Tamura K, Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform5:150–163[CrossRef]
    [Google Scholar]
  21. Lancashire J. F, Terry T. D, Blackall P. J, Jennings M. P. 2005; Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis . Antimicrob Agents Chemother49:1927–1931[CrossRef]
    [Google Scholar]
  22. Lemee L, Dhalluin A, Pestel-Caron M, Lemeland J. F, Pons J. L. 2004; Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol42:2609–2617[CrossRef]
    [Google Scholar]
  23. Maiden M. C, Bygraves J. A, Feil E. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145[CrossRef]
    [Google Scholar]
  24. Meats E, Feil E. J, Stringer S, Cody A. J, Goldstein R, Kroll J. S, Popovic T, Spratt B. G. 2003; Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol41:1623–1636[CrossRef]
    [Google Scholar]
  25. Nallapareddy S. R, Duh R. W, Singh K. V, Murray B. E. 2002; Molecular typing of selected Enterococcus faecalis isolates: pilot study using multilocus sequence typing and pulsed-field gel electrophoresis. J Clin Microbiol40:868–876[CrossRef]
    [Google Scholar]
  26. Nei M, Kumar S. (editors) 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
  27. Nielsen R. 1993; Pathogenicity and immunity studies of Haemophilus parasuis serotypes. Acta Vet Scand34:193–198
    [Google Scholar]
  28. Noller A. C, McEllistrem M. C, Stine O. C, Boxrud D. J, Dixon B, Harrison L. H, Morris J. G Jr. 2003; Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157 : H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol41:675–679[CrossRef]
    [Google Scholar]
  29. Oliveira S, Pijoan C. 2004; Haemophilus parasuis : new trends in diagnosis, epidemiology and control. Vet Microbiol99:1–12[CrossRef]
    [Google Scholar]
  30. Oliveira S, Blackall P. J, Pijoan C. 2003; Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res64:435–442[CrossRef]
    [Google Scholar]
  31. Olvera A, Calsamiglia M, Aragon V. 2006; Genotypic diversity of Haemophilus parasuis field strains. Appl Environ Microbiol72:3984–3992[CrossRef]
    [Google Scholar]
  32. Perez-Losada M, Browne E. B, Madsen A, Wirth T, Viscidi R. P, Crandall K. A. 2006; Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect Genet Evol6:97–112[CrossRef]
    [Google Scholar]
  33. Rafiee M, Bara M, Stephens C. P, Blackall P. J. 2000; Application of ERIC-PCR for the comparison of isolates of Haemophilus parasuis . Aust Vet J78:846–849[CrossRef]
    [Google Scholar]
  34. Rapp-Gabrielson V. J, Gabrielson D. A, Schamber G. J. 1992; Comparative virulence of Haemophilus parasuis serovars 1 to 7 in guinea pigs. Am J Vet Res53:987–994
    [Google Scholar]
  35. Rapp-Gabrielson V, Oliveira S, Pijoan C. 2006; Haemophilus parasuis . In Diseases of Swine pp. 681–690 Edited by Straw B. E., Zimmerman J. J., D'Allaire S., Taylor D. J.. Ames, IA: Blackwell Publishing;
  36. Shi Z. Y, Enright M. C, Wilkinson P, Griffiths D, Spratt B. G. 1998; Identification of three major clones of multiply antibiotic-resistant Streptococcus pneumoniae in Taiwanese hospitals by multilocus sequence typing. J Clin Microbiol36:3514–3519
    [Google Scholar]
  37. Smart N. L, Miniats O. P, MacInnes J. I. 1988; Analysis of Haemophilus parasuis isolates from southern Ontario swine by restriction endonuclease fingerprinting. Can J Vet Res52:319–324
    [Google Scholar]
  38. Smith J. M, Feil E. J, Smith N. H. 2000; Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays22:1115–1122[CrossRef]
    [Google Scholar]
  39. Spratt B. G. 1999; Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the internet. Curr Opin Microbiol2:312–316[CrossRef]
    [Google Scholar]
  40. Vahle J. L, Haynes J. S, Andrews J. J. 1995; Experimental reproduction of Haemophilus parasuis infection in swine: clinical, bacteriological, and morphologic findings. J Vet Diagn Invest7:476–480[CrossRef]
    [Google Scholar]
  41. van Loo I. H, Heuvelman K. J, King A. J, Mooi F. R. 2002; Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol40:1994–2001[CrossRef]
    [Google Scholar]
  42. Wang X. M, Noble L, Kreiswirth B. N, Eisner W, McClements W, Jansen K. U, Anderson A. S. 2003; Evaluation of a multilocus sequence typing system for Staphylococcus epidermidis . J Med Microbiol52:989–998[CrossRef]
    [Google Scholar]
  43. Xia X, Xie Z. 2001; dambe: software package for data analysis in molecular biology and evolution. J Hered92:371–373[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29254-0
Loading
/content/journal/micro/10.1099/mic.0.29254-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error