1887

Abstract

All strains of the moderately thermophilic, acidophilic, sulphur-oxidizing bacterium that have been tested contain a set of chromosomal arsenic resistance genes. Highly arsenic-resistant strains isolated from commercial arsenopyrite bio-oxidation tanks contain additional transposon-located (Tn) arsenic resistance genes. The chromosomal genes were cloned and found to consist of and genes transcribed in one direction, and in the opposite direction. The genes were co-transcribed with ORF1, and with ORF5 in both and , although deletion of ORFs 1 and 5 did not appear to affect resistance to arsenate or arsenite in . ORFs 1 and 5 have not previously been reported as part of the operons, and had high amino acid identity to hypothetical proteins from (76 %) and (60 %), respectively. Reporter-gene studies showed that the arsenic operon of transposon origin (Tn) was expressed at a higher level, and was less tightly regulated in than were the genes of chromosomal origin. Plasmid pSa-mediated conjugal transfer of Tn from to strains lacking the transposon was successful, and resulted in greatly increased levels of resistance to arsenite.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29247-0
2006-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3551.html?itemId=/content/journal/micro/10.1099/mic.0.29247-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3308–3402.
    [Google Scholar]
  2. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L. & Boyer, H. W. ( 1977; ). Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113.[CrossRef]
    [Google Scholar]
  3. Butcher, B. G. & Rawlings, D. E. ( 2002; ). The divergent chromosomal operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148, 3983–3992.
    [Google Scholar]
  4. Butcher, B. G., Deane, S. M. & Rawlings, D. E. ( 2000; ). The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66, 1826–1833.[CrossRef]
    [Google Scholar]
  5. Carlin, A., Shi, W., Dey, S. & Rosen, B. P. ( 1995; ). The ars operon of Escherichia coli confers arsenical and antimonal resistance. J Bacteriol 177, 981–986.
    [Google Scholar]
  6. Casadaban, M. J., Martinez-Arias, A., Shapira, S. K. & Chou, J. ( 1983; ). β-Galactosidase gene fusions for analysing gene expression in Escherichia coli and yeast. Methods Enzymol 100, 293–308.
    [Google Scholar]
  7. Chen, C.-M., Misra, T., Silver, S. & Rosen, B. P. ( 1986; ). Nucleotide sequence of the structural genes for an anion pump; the plasmid encoded arsenical resistance operons. J Biol Chem 261, 15030–15038.
    [Google Scholar]
  8. de Groot, P., Deane, S. M. & Rawlings, D. E. ( 2003; ). A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Hydrometallurgy 71, 115–123.[CrossRef]
    [Google Scholar]
  9. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. ( 1999; ). Improved microbial gene identification with glimmer. Nucleic Acids Res 27, 4636–4641.[CrossRef]
    [Google Scholar]
  10. Dew, D. W., Lawson, E. N. & Broadhurst, J. L. ( 1997; ). The Biox® process for biooxidation of gold-bearing ores or concentrates. In Biomining: Theory, Microbes and Industrial Processes, pp. 45–80. Edited by D. E. Rawlings. Berlin: Springer.
  11. Dopson, M., Lindstrom, E. B. & Hallberg, K. B. ( 2001; ). Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5, 247–255.[CrossRef]
    [Google Scholar]
  12. Goebel, B. M. & Stackebrandt, E. ( 1994; ). Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60, 1614–1621.
    [Google Scholar]
  13. Hallberg, K. B. & Lindström, E. B. ( 1994; ). Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140, 3451–3456.[CrossRef]
    [Google Scholar]
  14. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  15. Oden, K. L., Gladysheva, T. B. & Rosen, B. P. ( 1994; ). Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol 12, 301–306.[CrossRef]
    [Google Scholar]
  16. Rawlings, D. E., Coram, N. J., Gardner, M. N. & Deane, S. M. ( 1999; ). Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of ores and concentrates. In Biohydrometallurgy and the Environment: Towards the Mining of the 21st Century. Part A, pp. 777–786. Edited by R. Amils & A. Ballester. Amsterdam: Elsevier.
  17. Rawlings, D. E., Dew, D. & du Plessis, C. ( 2003; ). Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21, 38–44.[CrossRef]
    [Google Scholar]
  18. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Sanders, O. I., Rensing, C., Kuroda, M., Mitra, B. & Rosen, B. P. ( 1997; ). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179, 3365–3367.
    [Google Scholar]
  20. Shi, W., Wu, J. & Rosen, B. P. ( 1994; ). Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269, 19826–19829.
    [Google Scholar]
  21. Silver, S., Budd, K., Leahy, K. M., Shaw, W. V., Hammond, D., Novick, R. P., Willsky, J. R., Malamy, M. H. & Rosenburg, H. ( 1981; ). Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 172, 424–430.
    [Google Scholar]
  22. Tait, R. C., Lundquist, R. C. & Kado, C. I. ( 1982; ). Genetic map of the crown gall suppressive IncW plasmid pSa. Mol Gen Genet 186, 10–15.[CrossRef]
    [Google Scholar]
  23. Trindade, M., Abratt, V. R. & Reid, S. J. ( 2003; ). Induction of sucrose utilisation genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol 69, 24–32.[CrossRef]
    [Google Scholar]
  24. Tuffin, M., de Groot, P., Deane, S. M. & Rawlings, D. E. ( 2004; ). Multiple sets of arsenic resistance genes are present within highly arsenic resistant industrial strains of the biomining bacterium, Acidithiobacillus caldus. International Congress Series. Int Cong Ser 1275, 165–172.[CrossRef]
    [Google Scholar]
  25. Tuffin, I. M., de Groot, P., Deane, S. M. & Rawlings, D. E. ( 2005; ). A Tn21-like transposon containing an unusual ars operon is present in highly arsenic resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151, 3027–3039.[CrossRef]
    [Google Scholar]
  26. Yang, H.-C., Cheng, J., Finan, T. M., Rosen, B. P. & Battacharajee, H. ( 2005; ). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187, 6991–6997.[CrossRef]
    [Google Scholar]
  27. Zabeau, M. & Stanley, K. K. ( 1982; ). Enhanced expression of the cro-β-galactosidase fusion proteins under the control of the PR promoter of the bacteriophage lambda. EMBO J 1, 1217–1224.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29247-0
Loading
/content/journal/micro/10.1099/mic.0.29247-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error