1887

Abstract

The sigma gene, , of belongs to the group IV heat-shock response genes and has many orthologues in the bacterial phylum Firmicutes. The gene is considered to constitute an operon with (egulation of , formerly ). As little is known about either the structure and function of the operon or the SigI regulons, the role of RsgI in heat-inducible transcription of the operon was investigated, using Northern analysis and a heat-stable -galactosidase reporter assay. Heat-inducible, SigI-dependent transcription of the operon was stimulated greatly by disrupting . Yeast two-hybrid analysis showed direct interaction between the N-terminal portion of the presumed RsgI protein and SigI. Without RsgI function, induction of transcription of the operon upon transient heat stress depended on activity. However, transcription of the operon was induced during growth at prolonged higher temperature even without DnaK function. Without RsgI function, operon transcription was induced after the end of growth independent of any temperature shift in a sporulation medium and toward the end of growth in a rich complex medium. Furthermore, glucose addition resulted in a strong suppression of transcription. Therefore it is hypothesized that transcription of the operon of is negatively regulated by the putative transmembrane protein RsgI, which moderates SigI's sensitivity to heat shock or nutritional stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29239-0
2007-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/92.html?itemId=/content/journal/micro/10.1099/mic.0.29239-0&mimeType=html&fmt=ahah

References

  1. Asai, K., Kawamura, F., Yoshikawa, H. & Takahashi, H. ( 1995; ). Expression of kinA and accumulation of σ H at the onset of sporulation in Bacillus subtilis. J Bacteriol 177, 6679–6683.
    [Google Scholar]
  2. Asai, K., Yamaguchi, H., Kang, C.-M., Yoshida, K., Fujita, Y. & Sadaie, Y. ( 2003; ). DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. FEMS Microbiol Lett 220, 155–160.[CrossRef]
    [Google Scholar]
  3. De La Penas, A., Connolly, L. & Gross, C. A. ( 1997; ). Sigma E is an essential sigma factor in Escherichia coli. J Bacteriol 179, 6862–6864.
    [Google Scholar]
  4. Deutscher, J., Galinier, A. & Martin-Verstraete, I. ( 2002; ). Carbohydrate uptake and metabolism, pp. 129–150. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  5. Helmann, J. D. ( 2002; ). The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46, 47–110.
    [Google Scholar]
  6. Hirata, H., Fukazawa, T., Negoro, S. & Okada, H. ( 1986; ). Structure of a β-galactosidase gene of Bacillus stearothermophilus. J Bacteriol 166, 722–727.
    [Google Scholar]
  7. Homuth, G., Mogk, A. & Schumann, W. ( 1999; ). Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol Microbiol 32, 1183–1197.[CrossRef]
    [Google Scholar]
  8. Hughes, K. T. & Mathee, K. ( 1998; ). The anti-sigma factors. Annu Rev Microbiol 52, 231–286.[CrossRef]
    [Google Scholar]
  9. Kunst, F. N., Ogasawara, I., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G. Bessieres, P., Bolotin, A. & other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  10. Lindow, J. C., Kuwano, M., Moriya, S. & Grossman, A. D. ( 2002; ). Subcellular localization of the Bacillus subtilis structural maintenance of chromosomes (SMC) protein. Mol Microbiol 46, 997–1009.[CrossRef]
    [Google Scholar]
  11. Lonetto, M. A., Brown, K. L., Rudd, K. E. & Buttner, M. J. ( 1994; ). Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A 91, 7573–7577.[CrossRef]
    [Google Scholar]
  12. Missiakas, D. & Raina, S. ( 1998; ). The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28, 1059–1066.[CrossRef]
    [Google Scholar]
  13. Mittenhuber, G. ( 2002; ). An inventory of genes encoding RNA polymerase sigma factors in 31 completely sequenced eubacterial genomes. J Mol Microbiol Biotechnol 4, 77–91.
    [Google Scholar]
  14. Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. & Fujita, Y. ( 2000; ). Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28, 1206–1210.[CrossRef]
    [Google Scholar]
  15. Morita, M. T., Tanaka, Y., Komada, T. S., Kyougoku, Y., Yanagi, H. & Yura, T. ( 1999; ). Translational induction of heat shock transcription factor sigma 32: evidence for a built-in RNA thermosensor. Genes Dev 13, 655–665.[CrossRef]
    [Google Scholar]
  16. Ohshima, H., Matsuoka, S., Asai, K. & Sadaie, Y. ( 2002; ). Molecular organization of intrinsic restriction and modification genes BsuM of Bacillus subtilis Marburg. J Bacteriol 184, 381–389.[CrossRef]
    [Google Scholar]
  17. Peterson, A., Brigulia, M., Hass, S., Hoheisel, J. D., Volker, U. & Hecker, M. ( 2001; ). Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183, 5617–5631.[CrossRef]
    [Google Scholar]
  18. Platt, T., Muller-Hill, B. & Miller, J. H. ( 1972; ). Assays of the lac operon enzymes. In Experiments in Molecular Genetics, pp. 352–355. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Price, C. ( 2002; ). General stress response, pp. 369–384. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  20. Price, C. W., Fawcett, P., Ceremonie, H., Su, N., Murphy, C. K. & Youngman, P. ( 2001; ). Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41, 757–774.
    [Google Scholar]
  21. Raina, S., Missiakas, D. & Georgopoulos, C. ( 1995; ). The rpo gene encoding the σ E (σ 24) heat shock sigma factor of Escherichia coli. EMBO J 14, 1043–1055.
    [Google Scholar]
  22. Raivio, T. L. & Silhavy, T. J. ( 2001; ). Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55, 591–624.[CrossRef]
    [Google Scholar]
  23. Rouviere, P. E., De Las Penas, A., Lu, C. Z., Rudd, K. E. & Gross, C. A. ( 1995; ). rpoE, the gene encoding the second heat-shock sigma factor, σ E, in Escherichia coli. EMBO J 14, 1032–1042.
    [Google Scholar]
  24. Sadaie, Y. ( 1998; ). secA341 mutation inhibition of expression of the Bacillus subtilis protease gene, aprE. Biosci Biotechnol Biochem 62, 1784–1787.[CrossRef]
    [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Schaeffer, P., Millet, J. & Aubert, J. P. ( 1965; ). Catabolite repression of bacterial sporulation. Proc Natl Acad Sci U S A 54, 704–711.[CrossRef]
    [Google Scholar]
  27. Stragier, P. & Losick, R. ( 1996; ). Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30, 297–341.[CrossRef]
    [Google Scholar]
  28. Takamatsu, H., Kodama, T., Imamura, A., Asai, K., Kobayashi, K., Nakayama, T., Ogasawara, N. & Watabe, K. ( 2000; ). The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J Bacteriol 182, 1883–1888.[CrossRef]
    [Google Scholar]
  29. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.[CrossRef]
    [Google Scholar]
  30. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: σ S-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
  31. Wiegert, T., Homuth, G., Versteeg, S. & Schumann, W. ( 2001; ). Alkaline shock induces the Bacillus subtilis σ W regulon. Mol Microbiol 41, 59–71.[CrossRef]
    [Google Scholar]
  32. Wösten, M. M. S. M. ( 1998; ). Eubacterial sigma factors. FEMS Microbiol Rev 22, 127–150.[CrossRef]
    [Google Scholar]
  33. Yoshimura, M., Asai, K., Sadaie, Y. & Yoshikawa, H. ( 2004; ). Interaction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology 150, 591–599.[CrossRef]
    [Google Scholar]
  34. Yuan, G. & Wong, S. L. ( 1995; ). Regulation of groE expression in Bacillus subtilis: the involvement of the σ A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177, 5427–5433.
    [Google Scholar]
  35. Zuber, U., Drzewiecki, K. & Hecker, M. ( 2001; ). Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol 183, 1472–1475.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29239-0
Loading
/content/journal/micro/10.1099/mic.0.29239-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error