1887

Abstract

The ability of serovar Typhimurium to survive environmental stress requires specific, coordinated, responses, which induce resistance to the stress condition. This study investigated the relative contribution of and , the sigma factors regulating extracytoplasmic and general stress response functions, respectively, to survival at low temperature and also in media of differing osmotic strength, conditions relevant to food preservation. To determine if low-temperature storage is a signal for - and -mediated survival, the ability of . Typhimurium , and / mutants to survive in a saline starvation-survival model at a refrigeration temperature (4.5 °C) was examined. Under these conditions, the mutant was significantly (<0.05) compromised compared to the parent and to an mutant. The double mutant in and displayed a cumulative defect in survival. In hyperosmotic environments (low ) containing 6 % NaCl and at refrigeration temperature, both sigma factors were important for maximum survival but played the dominant role. Analysis of the metabolic activity of starved populations at 4.5 and 37 °C revealed significantly (<0.001) elevated electron-transport system activity in mutants in and , indicating a role for - and -regulated genes in maintaining energy homeostasis. Together these data demonstrate that and are important for survival of . Typhimurium in conditions encountered during food processing and that the relative contribution of and is critically dependent on the precise nature of the stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29235-0
2007-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/263.html?itemId=/content/journal/micro/10.1099/mic.0.29235-0&mimeType=html&fmt=ahah

References

  1. Alba, B. M. & Gross, C. A. ( 2004; ). Regulation of the Escherichia coli σ E-dependent envelope stress response. Mol Microbiol 52, 613–619.[CrossRef]
    [Google Scholar]
  2. Balaji, B., O'Connor, K., Lucas, J. R., Anderson, J. M. & Csonka, L. N. ( 2005; ). Timing of induction of osmotically controlled genes in Salmonella enterica Serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl Environ Microbiol 71, 8273–8283.[CrossRef]
    [Google Scholar]
  3. Bang, I. S., Frye, J. G., McClelland, M., Velayudhan, J. & Fang, F. C. ( 2005; ). Alternative sigma factor interactions in Salmonella: σ E and σ H promote antioxidant defences by enhancing σ S levels. Mol Microbiol 56, 811–823.[CrossRef]
    [Google Scholar]
  4. Becker, L. A., Bang, I. S., Crouch, M. L. & Fang, F. C. ( 2005; ). Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. Mol Microbiol 56, 1004–1016.[CrossRef]
    [Google Scholar]
  5. Bianchi, A. A. & Baneyx, F. ( 1999; ). Hyperosmotic shock induces the σ 32 and σ E stress regulons of Escherichia coli. Mol Microbiol 34, 1029–1038.[CrossRef]
    [Google Scholar]
  6. Blenkinsopp, S. A. & Lock, M. A. ( 1990; ). The measurement of electron transport system activity in river biofilms. Water Res 24, 441–445.[CrossRef]
    [Google Scholar]
  7. Dorman, C. J., Chatfield, S., Higgins, C. F., Hayward, C. & Dougan, G. ( 1989; ). Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun 7, 2136–2140.
    [Google Scholar]
  8. Fang, F. C. ( 2005; ). Sigma cascades in prokaryotic regulatory networks. Proc Natl Acad Sci U S A 102, 4933–4934.[CrossRef]
    [Google Scholar]
  9. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89, 11978–11982.[CrossRef]
    [Google Scholar]
  10. Hengge-Aronis, R. ( 1996; ). Back to log phase: σ S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21, 887–893.[CrossRef]
    [Google Scholar]
  11. Hengge-Aronis, R. ( 2002; ). Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4, 341–346.
    [Google Scholar]
  12. Hengge-Aronis, R., Lange, R., Henneberg, N. & Fischer, D. ( 1993; ). Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 175, 259–265.
    [Google Scholar]
  13. Hoiseth, S. K. & Stocker, B. A. ( 1981; ). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.[CrossRef]
    [Google Scholar]
  14. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. ( 1999; ). The alternative sigma factor, σ E, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67, 1560–1568.
    [Google Scholar]
  15. Kabir, M. S., Yamashita, D., Koyama, S. & 8 other authors ( 2005; ). Cell lysis directed by σ E in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology 151, 2721–2735.[CrossRef]
    [Google Scholar]
  16. Kandror, O., DeLeon, A. & Goldberg, A. L. ( 2002; ). Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99, 9727–9732.[CrossRef]
    [Google Scholar]
  17. Kenyon, W. J., Sayers, D. G., Humphreys, S., Roberts, M. & Spector, M. P. ( 2002; ). The starvation-stress response of Salmonella enterica serovar Typhimurium requires σ E-, but not CpxR-regulated extracytoplasmic functions. Microbiology 148, 113–122.
    [Google Scholar]
  18. Loewen, P. C. & Hengge-Aronis, R. ( 1994; ). The role of the sigma factor σ S (KatF) in bacterial global regulation. Annu Rev Microbiol 48, 53–80.[CrossRef]
    [Google Scholar]
  19. Mattick, K. L., Jørgensen, F., Legan, J. D., Cole, M. B., Porter, J., Lappin-Scott, H. M. & Humphrey, T. J. ( 2000; ). Survival and filamentation of Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 at low water activity. Appl Environ Microbiol 66, 1274–1279.[CrossRef]
    [Google Scholar]
  20. Miticka, H., Rowley, G., Rezuchova, B., Homerova, D., Humphreys, S., Farn, J., Roberts, M. & Kormanec, J. ( 2003; ). Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor σ E in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226, 307–314.[CrossRef]
    [Google Scholar]
  21. Munro, P. M., Flatau, G. N., Clement, R. L. & Gauthier, M. J. ( 1995; ). Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Appl Environ Microbiol 61, 1853–1858.
    [Google Scholar]
  22. Nickerson, C. A. & Curtiss, R., III ( 1997; ). Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect Immun 65, 1814–1823.
    [Google Scholar]
  23. O'Neal, C. R., Gabriel, W. M., Turk, A. K., Libby, S. J., Fang, F. C. & Spector, M. P. ( 1994; ). RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol 176, 4610–4616.
    [Google Scholar]
  24. Özkanca, R. & Flint, K. P. ( 1997; ). Relationship between respiratory enzymes and survival of Escherichia coli under starvation stress in lake water. J Appl Microbiol 82, 301–309.[CrossRef]
    [Google Scholar]
  25. Phadtare, S. ( 2004; ). Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6, 125–136.
    [Google Scholar]
  26. Polissi, A., De Laurentis, W., Zangrossi, S., Briani, F., Longhi, V., Pesole, G. & Deho, G. ( 2003; ). Changes in Escherichia coli Transcriptome during acclimatisation at low temperature. Res Microbiol 154, 573–580.[CrossRef]
    [Google Scholar]
  27. Rezuchova, B., Miticka, H., Homerova, D., Roberts, M. & Kormanec, J. ( 2003; ). New members of the Escherichia coli σ E regulon identified by a two-plasmid system. FEMS Microbiol Lett 225, 1–7.[CrossRef]
    [Google Scholar]
  28. Rhodius, V. A., Suh, W. C., Nonaka, G., West, J. & Gross, C. A. ( 2006; ). Conserved and variable functions of the σ E stress response in related genomes. PLoS Biol 4, e2.[CrossRef]
    [Google Scholar]
  29. Robbe-Saule, V., Algorta, A., Rouilhac, I. & Norel, F. ( 2003; ). Characterization of the RpoS status of clinical isolates of Salmonella enterica. Appl Environ Microbiol 69, 4352–4358.[CrossRef]
    [Google Scholar]
  30. Roslev, P. & King, G. M. ( 1993; ). Application of a tetrazolium salt with a water-soluble formazan as an indicator of viability in respiring bacteria. Appl Environ Microbiol 59, 2891–2896.
    [Google Scholar]
  31. Rowley, G., Stevenson, A., Kormanec, J. & Roberts, M. ( 2005; ). Effect of inactivation of degS on Salmonella enterica serovar typhimurium in vitro and in vivo. Infect Immun 73, 459–463.[CrossRef]
    [Google Scholar]
  32. Rowley, G., Spector, M., Kormanec, J. & Roberts, M. ( 2006; ). Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4, 383–394.[CrossRef]
    [Google Scholar]
  33. Spector, M. P. ( 1998; ). The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40, 233–279.
    [Google Scholar]
  34. Spector, M. P. & Cubitt, C. L. ( 1992; ). Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation-survival. Mol Microbiol 6, 1467–1476.[CrossRef]
    [Google Scholar]
  35. Skovierova, H., Rowley, G., Rezuchova, B., Homerova, D., Lewis, C., Roberts, M. & Kormanec, J. ( 2006; ). Identification of the σ E regulon of Salmonella enterica serovar Typhimurium. Microbiology 152, 1347–1359.[CrossRef]
    [Google Scholar]
  36. Testerman, T. L., Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Libby, S. J. & Fang, F. C. ( 2002; ). The alternative sigma factor σ E controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43, 771–782.[CrossRef]
    [Google Scholar]
  37. Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A. & Sauer, R. T. ( 2003; ). OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29235-0
Loading
/content/journal/micro/10.1099/mic.0.29235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error