1887

Abstract

Selected butyrate-producing bacteria from the human colon that are related to spp. and showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe . A major cell-associated amylase of high molecular mass (140–210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from A2-194, also includes a family 13 domain, which is preceded by two repeat units of ∼116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg or Ca for activity, and functioned as 1,4--glucanohydrolases (-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29233-0
2006-11-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3281.html?itemId=/content/journal/micro/10.1099/mic.0.29233-0&mimeType=html&fmt=ahah

References

  1. Abrams, S. A., Griffin, I. J., Hawthorne, K. M., Liang, L., Gunn, S. K., Darlington, G. & Ellis, K. J. ( 2005; ). A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82, 471–476.
    [Google Scholar]
  2. Anderson, K. L. & Salyers, A. A. ( 1989; ). Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171, 3192–3198.
    [Google Scholar]
  3. Archer, S. Y., Meng, S. F., Sheh, A. & Hodin, R. A. ( 1998; ). p21(WAF1) is required for butyrate mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 95, 6791–6796.[CrossRef]
    [Google Scholar]
  4. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S. & Flint, H. J. ( 2000; ). Phylogenetic relationships of dominant butyrate producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  5. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  6. Boraston, A. B., Bolam, D. N., Gilbert, H. J. & Davies, G. J. ( 2004; ). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769–781.[CrossRef]
    [Google Scholar]
  7. Boraston, A. B., Healey, M., Klassen, J., Ficko-Blean, E., van Bueren, A. L. & Law, V. ( 2006; ). A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 281, 587–598.[CrossRef]
    [Google Scholar]
  8. Cho, H. Y., Kim, Y. W., Kim, T. J., Lee, H. S., Kim, D. Y., Kim, J. W., Lee, Y. W., Leed, S. & Park, K. H. ( 2000; ). Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim Biophys Acta 1478, 333–340.[CrossRef]
    [Google Scholar]
  9. Cho, K. H., Cho, D., Wang, G.-R. & Salyers, A. A. ( 2001; ). New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. J Bacteriol 183, 7198–7205.[CrossRef]
    [Google Scholar]
  10. D'Elia, J. N. & Salyers, A. A. ( 1996; ). Contribution of a neopullulanase, a pullulanase, and an α-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 178, 7173–7179.
    [Google Scholar]
  11. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 386–395.
    [Google Scholar]
  12. Ding, S. Y., Rincon, M. T., Lamed, R., Martin, J. C., McCrae, S. I., Aurilia, V., Shoham, Y., Bayer, E. A. & Flint, H. J. ( 2001; ). Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183, 1945–1953.[CrossRef]
    [Google Scholar]
  13. Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. ( 2002; ). Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52, 1615–1620.[CrossRef]
    [Google Scholar]
  14. Duncan, S. H., Scott, K. P., Ramsay, A. G., Harmsen, H. J., Welling, G. W., Stewart, C. S. & Flint, H. J. ( 2003; ). Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69, 1136–1142.[CrossRef]
    [Google Scholar]
  15. Duncan, S. H., Aminov, R. I., Scott, K. P., Louis, P., Stanton, T. B. & Flint, H. J. ( 2006; ). Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56, 2437–2441.[CrossRef]
    [Google Scholar]
  16. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  17. Englyst, H. N., Kingman, S. M. & Cummings, J. H. ( 1992; ). Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46, S33–S50.
    [Google Scholar]
  18. Erra-Pujada, M., Debeire, P., Duchiron, F. & O'Donohue, M. J. ( 1999; ). The type II pullulanase of Thermococcus hydrothermalis: molecular characterisation of the gene and expression of the catalytic domain. J Bacteriol 181, 3284–3287.
    [Google Scholar]
  19. Flint, H. J., McPherson, C. A. & Martin, J. ( 1991; ). Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J Gen Microbiol 137, 123–129.[CrossRef]
    [Google Scholar]
  20. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336–3345.
    [Google Scholar]
  21. Giraud, E. & Cuny, G. ( 1997; ). Molecular characterization of the α-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3′-end structure with direct tandem repeats and suggests a common evolutionary origin. Gene 198, 149–157.[CrossRef]
    [Google Scholar]
  22. Hogg, D., Pell, G., Dupree, P., Goubet, F., Martin-Orue, S. M., Armand, S. & Gilbert, H. J. ( 2003; ). The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371, 1027–1043.[CrossRef]
    [Google Scholar]
  23. Hold, G. L., Pryde, S. E., Russell, V. J., Furrie, E. & Flint, H. J. ( 2002; ). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.[CrossRef]
    [Google Scholar]
  24. Jenkins, D. J., Vuksan, V., Kendall, C. W. & 7 other authors ( 1998; ). Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr 17, 609–616.[CrossRef]
    [Google Scholar]
  25. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  26. Le Blay, G., Michel, C., Blottiere, H. M. & Cherbut, C. ( 1999; ). Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch. Brit J Nutr 82, 419–426.
    [Google Scholar]
  27. Lever, M. ( 1977; ). Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81, 21–27.[CrossRef]
    [Google Scholar]
  28. Macfarlane, G. T. & Englyst, H. N. ( 1986; ). Starch utilization by the human large intestinal microflora. J Appl Bacteriol 60, 195–201.[CrossRef]
    [Google Scholar]
  29. MacGregor, E. A., Janeck, S. & Svensson, B. ( 2001; ). Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546, 1–20.[CrossRef]
    [Google Scholar]
  30. Marraffini, L. A., Ton-That, H., Zong, Y., Naravana, S. V. & Schneewind, O. ( 2004; ). Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. J Biol Chem 279, 37763–37770.[CrossRef]
    [Google Scholar]
  31. Mathupala, S., Saha, B. C. & Zeikus, J. G. ( 1990; ). Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum. Biochem Biophys Res Commun 166, 126–132.[CrossRef]
    [Google Scholar]
  32. McIntyre, A., Gibson, P. R. & Young, G. P. ( 1993; ). Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34, 386–391.[CrossRef]
    [Google Scholar]
  33. Miyazaki, K., Martin, J. C., Marinsek-Logar, R. & Flint, H. J. ( 1997; ). Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe 3, 373–381.[CrossRef]
    [Google Scholar]
  34. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  35. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6.[CrossRef]
    [Google Scholar]
  36. Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. ( 2001; ). An embarrassment of sortases – a richness of substrates? Trends Microbiol 9, 97–101.[CrossRef]
    [Google Scholar]
  37. Reeves, A. R., Wang, G.-R. & Salyers, A. A. ( 1997; ). Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179, 643–649.
    [Google Scholar]
  38. Rodriguez, S. R., Morlon-Guyot, J., Jore, J., Pintado, J., Juge, N. & Guyot, J. P. ( 2000; ). Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl Environ Microbiol 66, 3350–3356.[CrossRef]
    [Google Scholar]
  39. Rumbak, E., Rawlings, D. E., Lindsey, G. G. & Woods, D. R. ( 1991; ). Cloning, nucleotide sequence, and enzymatic characterization of an α-amylase from the ruminal bacterium Butyrivibrio fibrisolvens H17c. J Bacteriol 173, 4203–4211.
    [Google Scholar]
  40. Rumney, C. J., Duncan, S. H., Henderson, C. & Stewart, C. S. ( 1995; ). Isolation and characteristics of a wheatbran-degrading Butyrivibrio from human faeces. Lett Appl Microbiol 20, 232–236.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Sara, M., Egelseer, E. M., Dekitsch, C. & Sleytr, U. B. ( 1998; ). Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer, on the N-terminal part of the S-layer protein SbsB from Bacillus stearothermophilus PV72/p2. J Bacteriol 180, 6780–6783.
    [Google Scholar]
  43. Satoh, E., Uchimura, T., Kudo, T. & Komagata, K. ( 1997; ). Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing α-amylase from Streptococcus bovis 148. Appl Environ Microbiol 63, 4941–4944.
    [Google Scholar]
  44. Saul, D. J., Williams, L. C., Love, D. R., Chamley, L. W. & Bergquist, P. L. ( 1989; ). Nucleotide sequencing of a gene from Caldocellum saccharolyticum encoding for an exocellulase and endocellulase activity. Nucleic Acids Res 17, 439–444.[CrossRef]
    [Google Scholar]
  45. Schwiertz, A., Lehmann, U., Jacobasch, G. & Blaut, M. ( 2002; ). Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. J Appl Microbiol 93, 157–162.[CrossRef]
    [Google Scholar]
  46. Shipman, J. A., Cho, K. H., Siegel, H. A. & Salyers, A. A. ( 1999; ). Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181, 7206–7211.
    [Google Scholar]
  47. Silvi, S., Rumney, C. J., Cresci, A. & Rowland, I. R. ( 1999; ). Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol 86, 521–530.[CrossRef]
    [Google Scholar]
  48. Suau, A., Bonnet, R., Sutren, M., Godon, J.-J., Gibson, G. R., Collins, M. D. & Doré, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  49. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  50. Ton-That, H., Marraffini, L. A. & Schneewind, O. ( 2004; ). Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694, 269–278.[CrossRef]
    [Google Scholar]
  51. van Munster, I. P., Tangerman, A. & Nagengast, F. M. ( 1994; ). Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Dig Dis Sci 39, 834–842.[CrossRef]
    [Google Scholar]
  52. Wachtershauser, A. & Stein, J. ( 2000; ). Rationale for the luminal provision of butyrate in intestinal disease. Eur J Nutr 39, 164–171.[CrossRef]
    [Google Scholar]
  53. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. ( 2005; ). pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71, 3692–3700.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29233-0
Loading
/content/journal/micro/10.1099/mic.0.29233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error