1887

Abstract

is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via -acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a -box motif has been located within the promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that strain PP844 synthesizes AHLs. These were identified as -octanoylhomoserine lactone (C8-HSL), -(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), -(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), -decanoylhomoserine lactone (C10-HSL), -(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and -(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In , and mutants, expression was substantially down-regulated. Furthermore, expression in required both BpsR and C8-HSL. -deficient mutants exhibited hypersensitivity to the organic hydroperoxide -butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL ( mutant only), by complementation with the genes or by overexpression of . These data indicate that in , QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29226-0
2006-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3651.html?itemId=/content/journal/micro/10.1099/mic.0.29226-0&mimeType=html&fmt=ahah

References

  1. Aguilar, C., Friscina, A., Devescovi, G., Kojic, M. & Venturi, V. ( 2003; ). Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J Bacteriol 185, 6456–6462.[CrossRef]
    [Google Scholar]
  2. Alexeyev, M. F. ( 1999; ). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26, 824–826.
    [Google Scholar]
  3. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. ( 1992; ). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646–2654.[CrossRef]
    [Google Scholar]
  4. Altman, S. A., Zastawny, T. H., Randers, L., Lin, Z., Lumpkin, J. A., Remacle, J., Dizdaroglu, M. & Rao, G. ( 1994; ). tert-Butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat Res 306, 35–44.[CrossRef]
    [Google Scholar]
  5. Atkinson, S., Throup, J. P., Stewart, G. S. A. B. & Williams, P. ( 1999; ). A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33, 1267–1277.
    [Google Scholar]
  6. Cámara, M., Williams, P. & Hardman, A. ( 2002; ). Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2, 667–676.[CrossRef]
    [Google Scholar]
  7. Cheng, A. C. & Currie, B. J. ( 2005; ). Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18, 383–416.[CrossRef]
    [Google Scholar]
  8. Chhabra, S. R., Stead, P., Bainton, N. J., Salmond, G. P. C., Stewart, G. S. A. B., Williams, P. & Bycroft, B. W. ( 1993; ). Autoregulation of carbapenem biosynthesis in Erwinia carotovora. J Antibiot 46, 441–454.[CrossRef]
    [Google Scholar]
  9. Chhabra, S. R., Harty, C., Hooi, D. S., Daykin, M., Williams, P., Telford, G., Pritchard, D. I. & Bycroft, B. W. ( 2003; ). Synthetic analogues of the bacterial signal quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46, 97–104.[CrossRef]
    [Google Scholar]
  10. De Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  11. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. & Cámara, M. ( 2002; ). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184, 2576–2586.[CrossRef]
    [Google Scholar]
  12. Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. & Williams, P. ( 2003; ). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50, 29–43.[CrossRef]
    [Google Scholar]
  13. Egan, A. M. & Gordon, D. L. ( 1996; ). Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect Immun 64, 4952–4959.
    [Google Scholar]
  14. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  15. Hassett, D. J., Ma, J. F., Elkins, J. G. & 10 other authors ( 1999; ). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34, 1082–1093.[CrossRef]
    [Google Scholar]
  16. Jones, A. L., Beveridge, T. J. & Woods, D. E. ( 1996; ). Intracellular survival of Burkholderia pseudomallei. Infect Immun 64, 782–790.
    [Google Scholar]
  17. Lazdunski, A. M., Ventre, I. & Sturgis, J. N. ( 2004; ). Regulatory circuits and communication in gram-negative bacteria. Nat Rev Microbiol 2, 581–592.[CrossRef]
    [Google Scholar]
  18. Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski-Dye, F., Williams, P. & Downie, J. A. ( 2000; ). The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37, 81–97.[CrossRef]
    [Google Scholar]
  19. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. ( 2000; ). Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 254, 129–137.[CrossRef]
    [Google Scholar]
  20. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. ( 2003; ). Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542, 17–21.[CrossRef]
    [Google Scholar]
  21. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. ( 2004; ). DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 182, 96–101.[CrossRef]
    [Google Scholar]
  22. Martinez, A. & Kolter, R. ( 1997; ). Protection of DNA during oxidative stress by the non-specfic DNA-binding protein Dps. J Bacteriol 179, 5188–5194.
    [Google Scholar]
  23. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Nathan, S. A., Qvist, R. & Puthucheary, S. D. ( 2005; ). Kinetic studies of bioactive products nitric oxide and 8-iso-PGF(2alpha) in Burkholderia pseudomallei infected human macrophages, and their role in the intracellular survival of these organisms. FEMS Immunol Med Microbiol 43, 177–183.[CrossRef]
    [Google Scholar]
  25. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  26. Song, Y., Xie, C., Ong, Y. M., Gan, Y. H. & Chua, K. L. ( 2005; ). The BpsIR quorum-sensing system of Burkholderia pseudomallei. J Bacteriol 187, 785–790.[CrossRef]
    [Google Scholar]
  27. Stillman, T. J., Upadhyay, M., Norte, V. A. & 9 other authors ( 2005; ). The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 57, 1101–1112.[CrossRef]
    [Google Scholar]
  28. Swift, S., Downie, J. A., Whitehead, N. A., Barnard, A. M., Salmond, G. P. & Williams, P. ( 2001; ). Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45, 199–270.
    [Google Scholar]
  29. Ulrich, R. L., Deshazer, D., Brueggemann, E. E., Hines, H. B., Oyston, P. C. & Jeddeloh, J. A. ( 2004a; ). Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol 53, 1053–1064.[CrossRef]
    [Google Scholar]
  30. Ulrich, R. L., Deshazer, D., Hines, H. B. & Jeddeloh, J. A. ( 2004b; ). Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect Immun 72, 6589–6596.[CrossRef]
    [Google Scholar]
  31. Ulrich, R. L., Hines, H. B., Parthasarathy, N. & Jeddeloh, J. A. ( 2004c; ). Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186, 4350–4360.[CrossRef]
    [Google Scholar]
  32. Utaisincharoen, P., Tangthawornchaikul, N., Kespichayawattana, W., Chaisuriya, P. & Sirisinha, S. ( 2001; ). Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol 45, 307–313.[CrossRef]
    [Google Scholar]
  33. Valade, E., Thibault, F. M., Gauthier, Y. P., Palencia, M., Popoff, M. Y. & Vidal, D. R. ( 2004; ). The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol 186, 2288–2294.[CrossRef]
    [Google Scholar]
  34. Winson, M. K., Cámara, M., Latifi, A. & 10 other authors ( 1995; ). Multiple N-acylhomoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in P. aeruginosa. Proc Natl Acad Sci U S A 92, 9427–9431.[CrossRef]
    [Google Scholar]
  35. Withers, H., Swift, S. & Williams, P. ( 2001; ). Quorum sensing as an integral component of gene regulatory networks. Curr Opin Microbiol 4, 186–193.[CrossRef]
    [Google Scholar]
  36. Wuthiekanun, V., Smith, M. D., Dance, D. A. & White, N. J. ( 1995; ). Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89, 41–43.[CrossRef]
    [Google Scholar]
  37. Yamamoto, Y., Poole, L. B., Hantgan, R. R. & Kamio, Y. ( 2002; ). An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184, 2931–2939.[CrossRef]
    [Google Scholar]
  38. Yates, E. A., Philipp, B., Buckley, C. & 8 other authors ( 2002; ). N-Acyl homoserine lactones undergo lactonysis in a pH- temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70, 5635–5646.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29226-0
Loading
/content/journal/micro/10.1099/mic.0.29226-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error