1887

Abstract

The predicted extracellular proteins of the bacterium were analysed to gain insight into the mechanisms underlying interactions of this bacterium with its environment. Extracellular proteins play important roles in processes ranging from probiotic effects in the gastrointestinal tract to degradation of complex extracellular carbon sources such as those found in plant materials, and they have a primary role in the adaptation of a bacterium to changing environmental conditions. The functional annotation of extracellular proteins was improved using a wide variety of bioinformatics methods, including domain analysis and phylogenetic profiling. At least 12 proteins are predicted to be directly involved in adherence to host components such as collagen and mucin, and about 30 extracellular enzymes, mainly hydrolases and transglycosylases, might play a role in the degradation of substrates by to sustain its growth in different environmental niches. A comprehensive overview of all predicted extracellular proteins, their domains composition and their predicted function is provided through a database at http://www.cmbi.ru.nl/secretome, which could serve as a basis for targeted experimental studies into the function of extracellular proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29217-0
2006-11-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3175.html?itemId=/content/journal/micro/10.1099/mic.0.29217-0&mimeType=html&fmt=ahah

References

  1. Adlerberth I, Ahrne S, Johansson M. L, Molin G, Hanson L. A, Wold A. E. 1996; A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol62:2244–2251
    [Google Scholar]
  2. Altermann E, Russell W. M, Azcarate-Peril M. A.11 other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A102:3906–3912[CrossRef]
    [Google Scholar]
  3. Bailey T. L, Elkan C. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36
    [Google Scholar]
  4. Bateman A, Bycroft M. 2000; The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol299:1113–1119[CrossRef]
    [Google Scholar]
  5. Bateman A, Coin L, Durbin R.10 other authors 2004; The Pfam protein families database. Nucleic Acids Res32:D138–D141[CrossRef]
    [Google Scholar]
  6. Bendtsen J. D, Nielsen H, Brunak S, von Heijne G. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795[CrossRef]
    [Google Scholar]
  7. Boekhorst J, Kleerebezem M, Siezen R. J, de Been M. W. 2005; Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol187:4928–4934[CrossRef]
    [Google Scholar]
  8. Boekhorst J, Helmer Q, Kleerebezem M, Siezen R. J. 2006; Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology152:273–280[CrossRef]
    [Google Scholar]
  9. Bork P. 1991; Shuffled domains in extracellular proteins. FEBS Lett286:47–54[CrossRef]
    [Google Scholar]
  10. Brendel V, Bucher P, Nourbakhsh I. R, Blaisdell B. E, Karlin S. 1992; Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A89:2002–2006[CrossRef]
    [Google Scholar]
  11. Buck B. L, Altermann E, Svingerud T, Klaenhammer T. R. 2005; Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol71:8344–8351[CrossRef]
    [Google Scholar]
  12. Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. 2002; Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol10:238–245[CrossRef]
    [Google Scholar]
  13. Chaillou S, Champomier-Verges M. C, Cornet M.8 other authors 2005; The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol23:1527–1533[CrossRef]
    [Google Scholar]
  14. Chia J. S, Chang L. Y, Shun C. T, Chang Y. Y, Tsay Y. G, Chen J. Y. 2001; A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans . Infect Immun69:6987–6998[CrossRef]
    [Google Scholar]
  15. Christie J, McNab R, Jenkinson H. F. 2002; Expression of fibronectin-binding protein FbpA modulates adhesion in Streptococcus gordonii . Microbiology148:1615–1625
    [Google Scholar]
  16. de Vries M, Vaughan E. E, Kleerebezem M, de Vos W. M. 2005; Lactobacillus plantarum – survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J16:1018–1028
    [Google Scholar]
  17. Doolittle R. F, Bork P. 1993; Evolutionarily mobile modules in proteins. Sci Am269:50–56
    [Google Scholar]
  18. Durbin R. E. S, Krogh A, Mitchison G. 1998; Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Cambridge: Cambridge University Press;
    [Google Scholar]
  19. Edgar R. C. 2004; muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics5:113[CrossRef]
    [Google Scholar]
  20. Gaillard J. L, Berche P, Frehel C, Gouin E, Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell65:1127–1141[CrossRef]
    [Google Scholar]
  21. Gough J, Karplus K, Hughey R, Chothia C. 2001; Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol313:903–919[CrossRef]
    [Google Scholar]
  22. Guindon S, Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704[CrossRef]
    [Google Scholar]
  23. Hammerschmidt S. 2006; Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol9:12–20[CrossRef]
    [Google Scholar]
  24. Hartford O, Francois P, Vaudaux P, Foster T. J. 1997; The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol25:1065–1076[CrossRef]
    [Google Scholar]
  25. Horn C, Namane A, Pescher P, Riviere M, Romain F, Puzo G, Barzu O, Marchal G. 1999; Decreased capacity of recombinant 45/47-kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern. J Biol Chem274:32023–32030[CrossRef]
    [Google Scholar]
  26. Jankovic I, Ventura M, Meylan V, Rouvet M, Elli M, Zink R. 2003; Contribution of aggregation-promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2. J Bacteriol185:3288–3296[CrossRef]
    [Google Scholar]
  27. Kawai R, Igarashi K, Samejima M. 2006; Gene cloning and heterologous expression of glycoside hydrolase family 55 beta-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium . Biotechnol Lett28:365–371[CrossRef]
    [Google Scholar]
  28. Kleerebezem M, Boekhorst J, van Kranenburg R. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995[CrossRef]
    [Google Scholar]
  29. Krogh A, Larsson B, Sonnhammer E. L, von Heijne G. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580[CrossRef]
    [Google Scholar]
  30. Marco M. L, Pavan S, Kleerebezem M. 2006; Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol17:204–210[CrossRef]
    [Google Scholar]
  31. Molenaar D, Bringel F, Schuren F. H, Siezen R. J, Kleerebezem M, de Vos W. M. 2005; Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol187:6119–6127[CrossRef]
    [Google Scholar]
  32. Nardini M, Dijkstra B. W. 1999; Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol9:732–737[CrossRef]
    [Google Scholar]
  33. Navarre W. W, Schneewind O. 1999; Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev63:174–229
    [Google Scholar]
  34. Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster T. J. 1998; Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol30:245–257[CrossRef]
    [Google Scholar]
  35. Pretzer G, Snel J, Molenaar D.7 other authors 2005; Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum . J Bacteriol187:6128–6136[CrossRef]
    [Google Scholar]
  36. Pridmore D, Berger B, Desiere F.12 other authors 2004; The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A101:2512–2517[CrossRef]
    [Google Scholar]
  37. Roos S, Jonsson H. 2002; A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology148:433–442
    [Google Scholar]
  38. Siezen R. J, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M. 2006; Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics7:126[CrossRef]
    [Google Scholar]
  39. Smith T. F, Waterman M. S. 1981; Identification of common molecular subsequences. J Mol Biol147:195–197[CrossRef]
    [Google Scholar]
  40. Soding J. 2005; Protein homology detection by HMM-HMM comparison. Bioinformatics21:951–960[CrossRef]
    [Google Scholar]
  41. Steen A, Buist G, Leenhouts K. J, El Khattabi M, Grijpstra F, Zomer A. L, Venema G, Kuipers O. P, Kok J. 2003; Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem278:23874–23881[CrossRef]
    [Google Scholar]
  42. Sutcliffe I. C, Harrington D. J. 2002; Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology148:2065–2077
    [Google Scholar]
  43. Sutcliffe I. C, Russell R. R. 1995; Lipoproteins of gram-positive bacteria. J Bacteriol177:1123–1128
    [Google Scholar]
  44. Symersky J, Patti J. M, Carson M.8 other authors 1997; Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol4:833–838[CrossRef]
    [Google Scholar]
  45. Thompson J. D, Gibson T. J, Plewniak F, Jeanmougin F, Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  46. Ventura M, Jankovic I, Walker D. C, Pridmore R. D, Zink R. 2002; Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri . Appl Environ Microbiol68:6172–6181[CrossRef]
    [Google Scholar]
  47. von Mering C, Jensen L. J, Snel B, Hooper S. D, Krupp M, Foglierini M, Jouffre N, Huynen M. A, Bork P. 2005; STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res33:D433–D437
    [Google Scholar]
  48. Wels M, Francke C, Kerkhoven R, Kleerebezem M, Siezen R. J. 2006; Predicting cis -acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups. Nucleic Acids Res34:1947–1958[CrossRef]
    [Google Scholar]
  49. Yuen L, Dionne J, Arif B, Richardson C. 1990; Identification and sequencing of the spheroidin gene of Choristoneura biennis entomopoxvirus. Virology175:427–433[CrossRef]
    [Google Scholar]
  50. Zhang J. R, Mostov K. E, Lamm M. E, Nanno M, Shimida S, Ohwaki M, Tuomanen E. 2000; The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell102:827–837[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29217-0
Loading
/content/journal/micro/10.1099/mic.0.29217-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error