1887

Abstract

Poly-3-hydroxybutyrate (PHB) and glycogen are major carbon storage compounds in . The roles of PHB and glycogen in rhizobia–legume symbiosis are not fully understood. Glycogen synthase mutations were constructed by in-frame deletion () or insertion (). These mutations were combined with a mutation to make all combinations of double and triple mutants. PHB was not detectable in any of the mutants containing the mutation; glycogen was not detectable in any of the mutants containing the mutation. PHB levels were significantly lower in the mutant, while glycogen levels were increased in the mutant. Exopolysaccharide (EPS) was not detected in any of the mutants, while the and mutants produced levels of EPS similar to the wild-type. Symbiotic properties of these strains were investigated on and . The results indicated that the strains unable to synthesize PHB, or glycogen, were still able to form nodules and fix nitrogen. However, mutations caused greater nodule formation delay on than on . Time-course studies showed that (1) the ability to synthesize PHB is important for N fixation in nodules and younger nodules, and (2) the blocking of glycogen synthesis resulted in lower levels of N fixation on and older nodules on . These data have important implications for understanding how PHB and glycogen function in the interactions of with spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29214-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/388.html?itemId=/content/journal/micro/10.1099/mic.0.29214-0&mimeType=html&fmt=ahah

References

  1. Aneja P., Charles T. C. 1999; Poly-3-hydroxybutyrate degradation in Rhizobium ( Sinorhizobium ) meliloti : isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 181:849–857
    [Google Scholar]
  2. Aneja P., Dai M., Lacorre D. A., Pillon B., Charles T. C. 2004; Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 239:277–283 [CrossRef]
    [Google Scholar]
  3. Aneja P., Zachertowska A., Charles T. C. 2005; Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Can J Microbiol 51:599–604 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1997 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 84:188–198 [CrossRef]
    [Google Scholar]
  6. Brewin N. J. 1991; Development of the legume root nodule. Annu Rev Cell Biol 7:191–226 [CrossRef]
    [Google Scholar]
  7. Buchanan J. T., Stannard J. A., Lauth X., Ostland V. E., Powell H. C., Westerman M. E., Nizet V. 2005; Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect Immun 73:6935–6944 [CrossRef]
    [Google Scholar]
  8. Cai G.-Q., Driscoll B. T., Charles T. C. 2000; Requirement for the enzymes acetoacetyl coenzyme A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates. J Bacteriol 182:2113–2118 [CrossRef]
    [Google Scholar]
  9. Cermola M., Fedorova E., Tata R., Riccio A., Favre R., Patriarca E. J. 2000; Nodule invasion and symbiosome differentiation during Rhizobium etli - Phaseolus vulgaris symbiosis. Mol Plant Microbe Interact 13:733–741 [CrossRef]
    [Google Scholar]
  10. Charles T. C., Finan T. M. 1990; Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. J Bacteriol 172:2469–2476
    [Google Scholar]
  11. Charles T. C., Finan T. M. 1991; Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo . Genetics 127:5–20
    [Google Scholar]
  12. Charles T. C., Cai G.-Q., Aneja P. 1997; Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium ( Sinorhizobium ) meliloti . Genetics 146:1211–1220
    [Google Scholar]
  13. Chun Y., Yin Z. D. 1998; Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. J Clin Microbiol 36:1081–1082
    [Google Scholar]
  14. Doherty D., Leigh J. A., Glazebrook J., Walker G. C. 1988; Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J Bacteriol 170:4249–4256
    [Google Scholar]
  15. Dunn M. F., Araiza G., Encarnacion S., Mora J., del Carmen Vargas M. 2002; Effect of aniA (carbon flux regulator) and phaC (poly- β -hydroxybutyrate synthase) mutations on pyruvate metabolism in Rhizobium etli . J Bacteriol 184:2296–2299 [CrossRef]
    [Google Scholar]
  16. Encarnacion S., Dunn M. F., Davalos A., Mendoza G., Mora Y., Mora J., del Carmen Vargas M. 2002; AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli . J Bacteriol 184:2287–2295 [CrossRef]
    [Google Scholar]
  17. Fahraeus A. 1957; The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381 [CrossRef]
    [Google Scholar]
  18. Finan T. M., Hartwieg E. K., LeMieux K., Bergman K., Walker G. C., Signer E. R. 1984; General transduction in Rhizobium meliloti . J Bacteriol 159:120–124
    [Google Scholar]
  19. Finan T. M., Kunkel B., DeVos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  20. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorholter F. J., Hernandez-Lucas I., Becker A., Cowie A. other authors 2001; The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A 98:9889–9894 [CrossRef]
    [Google Scholar]
  21. Fraysse N., Couderc F., Poinsot V. 2003; Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380 [CrossRef]
    [Google Scholar]
  22. Gage D. J., Bobo T., Long S. R. 1996; Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa ( Medicago sativa . J Bacteriol 178:7159–7166
    [Google Scholar]
  23. Galibert F., Finan T. M.other authors Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672 [CrossRef]
    [Google Scholar]
  24. Glazebrook J., Walker G. C. 1989; A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti . Cell 56:661–672 [CrossRef]
    [Google Scholar]
  25. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  26. Hirsch A. M., Bang M., Ausubel F. M. 1983; Ultrastructural analysis of ineffective alfalfa nodules formed by nif  : : Tn 5 mutants of Rhizobium meliloti . J Bacteriol 155:367–380
    [Google Scholar]
  27. Jensen H. L. 1942; Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc Linn Soc N S W 66:98–108
    [Google Scholar]
  28. Law J. H., Slepecky R. A. 1961; Assay of poly- β -hydroxybutyric acid. J Bacteriol 82:33–36
    [Google Scholar]
  29. Leigh J. A., Walker G. C. 1994; Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10:63–67 [CrossRef]
    [Google Scholar]
  30. Lepek V. C., D'Antuono A. L., Tomatis P. E., Ugalde J. E., Giambiagi S., Ugalde R. A. 2002; Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase ( pgm ) and glycogen synthase ( glgA ) null mutants on nodulation of Lotus tenuis . Mol Plant Microbe Interact 15:368–375 [CrossRef]
    [Google Scholar]
  31. Lodwig E. M., Poole P. S. 2003; Metabolism of rhizobium bacteroids. Crit Rev Plant Sci 22:37–78 [CrossRef]
    [Google Scholar]
  32. Lodwig E. M., Leonard M., Marroqui S., Wheeler T. R., Findlay K., Downie J. A., Poole P. S. 2005; Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol Plant Microbe Interact 18:67–74 [CrossRef]
    [Google Scholar]
  33. Long S. R. 1989; Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214 [CrossRef]
    [Google Scholar]
  34. Long S. R. 2001; Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72 [CrossRef]
    [Google Scholar]
  35. Mandon K., Michel-Reydellet N., Kaminski P. A., Leija A., Cevallos M. A., Elmerich C., Mora J., Encarnación S. 1998; Poly- β -hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J Bacteriol 180:5070–5076
    [Google Scholar]
  36. Marroqui S., Zorreguieta A., Santamaria C., Temprano F., Soberon M., Megias M., Downie J. A. 2001; Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864 [CrossRef]
    [Google Scholar]
  37. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  38. Mendrygal K. E., Gonzalez J. E. 2000; Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti . J Bacteriol 182:599–606 [CrossRef]
    [Google Scholar]
  39. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Niehaus K., Becker A. 1998; The role of microbial surface polysaccharides in the Rhizobium -legume interaction. Subcell Biochem 29:73–116
    [Google Scholar]
  41. Paau A. S., Cowles J. R., Raveed D. 1978; Development of bacteroids in alfalfa ( Medicago sativa ) nodules. Plant Physiol 62:526–530 [CrossRef]
    [Google Scholar]
  42. Peoples O. P., Sinskey A. J. 1989; Poly- β -hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β -ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297
    [Google Scholar]
  43. Povolo S., Casella S. 2000; A critical role for aniA in energy-carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti . Arch Microbiol 174:42–49 [CrossRef]
    [Google Scholar]
  44. Povolo S., Tombolini R., Morea A., Anderson A. J., Casella S., Nuti M. P. 1994; Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly- β -hydroxybutyrate (PHB. Can J Microbiol 40:823–829 [CrossRef]
    [Google Scholar]
  45. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  46. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  47. Schultze M., Kondorosi A. 1998; Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57 [CrossRef]
    [Google Scholar]
  48. Tombolini R., Povolo S., Buson A., Squartini A., Nuti M. P. 1995; Poly- β -hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology 141:2553–2559 [CrossRef]
    [Google Scholar]
  49. Trainer M. A., Charles T. C. 2006; The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71:377–386 [CrossRef]
    [Google Scholar]
  50. Tsien H. C., Schmidt E. L. 1977; Polarity in the exponential-phase Rhizobium japonicum cell. Can J Microbiol 23:1274–1284 [CrossRef]
    [Google Scholar]
  51. Udvardi M. K., Day D. A. 1997; Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523 [CrossRef]
    [Google Scholar]
  52. Ugalde J. E., Parodi A. J., Ugalde R. A. 2003; De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci U S A 100:10659–10663 [CrossRef]
    [Google Scholar]
  53. van Rhijn P., Vanderleyden J. 1995; The Rhizobium -plant symbiosis. Microbiol Rev 59:124–142
    [Google Scholar]
  54. Vasse J., Camut S., Truchet G., de Billy F. 1990; Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306
    [Google Scholar]
  55. Vieira J., Messing J. 1982; The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  56. Willis L. B., Walker G. C. 1998; The phbC (poly- β -hydroxybutyrate synthase) gene of Rhizobium ( Sinorhizobium ) meliloti and characterization of phbC mutants. Can J Microbiol 44:554–564 [CrossRef]
    [Google Scholar]
  57. Zevenhuizen L. P. 1981; Cellular glycogen, beta-1,2,-glucan, poly beta-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie Van Leeuwenhoek 47:481–497 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29214-0
Loading
/content/journal/micro/10.1099/mic.0.29214-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error